OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 3 — Mar. 1, 2004
  • pp: 671–680

Photonic bandgap structures in planar nonlinear waveguides: application to squeezed-light generation

D. Tricca, C. Sibilia, S. Severini, M. Bertolotti, M. Scalora, C. M. Bowden, and K. Sakoda  »View Author Affiliations

JOSA B, Vol. 21, Issue 3, pp. 671-680 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (300 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Quadrature-amplitude and phase squeezing are theoretically investigated in a planar waveguide geometry where the use of a linear grating fabricated on top of the waveguide reproduces a photonic bandgap structure. The introduction of a nonlinear grating, obtained with a modulation of the nonlinear susceptibility χ(2), provides an additional degree of freedom that allows, together with the linear grating, tuning of the fundamental field in a selected resonance of the transmission spectrum and, at the same time, control of the phase-matching condition between the fundamental and second-harmonic fields. The results show that quadrature-amplitude squeezing is achieved for the fundamental field, increasing the second-harmonic input intensity. The second-harmonic field is tuned in the passband of the photonic bandgap. The low nonlinear conversion efficiency, given by a suitable selection of the mismatch, gives rise to the possibility of having a fundamental field of quite the same intensity, but less noisy than at the entry.

© 2004 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4360) Nonlinear optics : Nonlinear optics, devices
(270.0270) Quantum optics : Quantum optics
(270.6570) Quantum optics : Squeezed states

D. Tricca, C. Sibilia, S. Severini, M. Bertolotti, M. Scalora, C. M. Bowden, and K. Sakoda, "Photonic bandgap structures in planar nonlinear waveguides: application to squeezed-light generation," J. Opt. Soc. Am. B 21, 671-680 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Bowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, “Pulsed second-harmonic generation in nonlinear one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997). [CrossRef]
  2. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band-gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994). [CrossRef] [PubMed]
  3. M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one dimensional, photonic band gap structures: application to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891–4898 (1999). [CrossRef]
  4. D. Pezzetta, C. Sibilia, M. Bertolotti, J. W. Haus, M. Scalora, M. J. Bloemer, and C. M. Bowden, “Photonic bandgap structures in planar nonlinear waveguides: application to second-harmonic generation,” J. Opt. Soc. Am. B 18, 1326–1333 (2001). [CrossRef]
  5. Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, C. Sibilia, M. Centini, G. D’Aguanno, and M. Scalora, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78, 3021–3023 (2001). [CrossRef]
  6. K. Sakoda, “Enhancement of quadrature-phase squeezing in photonic crystals,” J. Opt. Soc. Am. B 19, 2060–2065 (2002). [CrossRef]
  7. See, for example, M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, Cambridge, UK, 1997), Chap. 2.
  8. G. Kanter and P. Kumar, “Enhancement of bright squeezing in the second harmonic generation by internally seeding the χ(2) interaction,” IEEE J. Quantum Electron. 36, 916–922 (2000). [CrossRef]
  9. M. Centini, C. Sibilia, G. D’Aguanno, M. Bertolotti, M. Scalora, M. J. Bloemer, and C. M. Bowden, “Reflectivity control via second-order interaction process in one dimensional photonic band gap structures,” Opt. Commun. 184, 283–288 (2000). [CrossRef]
  10. D. K. Serkland, M. M. Fejer, R. L. Byer, and Y. Yamamoto, “Squeezing in a quasi-phase matched LiNbO3 waveguide,” Opt. Lett. 20, 1649–1651 (1995). [CrossRef] [PubMed]
  11. D. K. Serkland, P. Kumar, M. A. Arbore, and M. M. Fejer, “Amplitude squeezing by means of quasi-phase-matched second-harmonic generation in a LiNbO3 waveguide,” Opt. Lett. 22, 1497–1499 (1997). [CrossRef]
  12. M. Lawrence, R. L. Byer, M. M. Fejer, W. Bowen, P. K. Lam, and H. A. Bachor, “Squeezed singly resonant second-harmonic generation in periodically poled lithium niobate,” J. Opt. Soc. Am. B 19, 1592–1598 (2002). [CrossRef]
  13. R. D. Li and P. Kumar, “Quantum noise reduction in travelling wave second-harmonic generation,” Phys. Rev. A 49, 2157–2166 (1994). [CrossRef] [PubMed]
  14. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).
  15. M. A. M. Marte and D. F. Walls, “Quantum theory of a squeezed-pump laser,” Phys. Rev. A 37, 1235–1247 (1988). [CrossRef] [PubMed]
  16. J. A. Armstrong, N. Bloembergen, J. Ducing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962). [CrossRef]
  17. G. D’Aguanno, C. Sibilia, E. Fazio, E. Ferrari, and M. Bertolotti, “Field phase modulation and input phase and intensity dependence in a nonlinear second order interaction,” J. Mod. Opt. 45, 1049–1066 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited