OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 4 — Apr. 1, 2004
  • pp: 706–718

Analytical method for designing grating-compensated dispersion-managed soliton systems

Y. H. C. Kwan, K. Nakkeeran, and P. K. A. Wai  »View Author Affiliations

JOSA B, Vol. 21, Issue 4, pp. 706-718 (2004)

View Full Text Article

Acrobat PDF (256 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a useful analytical method for designing grating-compensated dispersion-managed (DM) soliton systems for any desired input pulse widths and energies. The pulse-width and chirp evolution equations derived from the variational method are solved exactly to obtain the explicit analytical expressions for the length of the dispersion map and the grating dispersion. We also extend our analytical method to design grating-compensated DM soliton systems with loss and gain. We show that our analytically designed DM soliton systems also apply even if the chirped fiber gratings have group-delay ripples. The results obtained from our analytical method are in good agreement with those obtained from full numerical simulations. Finally a 160-Gbits/s transmission system is simulated with all the important higher-order effects to show the effectiveness of our analytical design.

© 2004 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(220.4830) Optical design and fabrication : Systems design

Y. H. C. Kwan, K. Nakkeeran, and P. K. A. Wai, "Analytical method for designing grating-compensated dispersion-managed soliton systems," J. Opt. Soc. Am. B 21, 706-718 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. V. E. Zakharov and S. Wabnitz, Optical Solitons: Theoretical Challenges and Industrial Perspectives (Springer, Berlin, Germany, 1998).
  2. S. Kumar and A. Hasegawa, “Quasi-soliton propagation in dispersion-managed optical fibers,” Opt. Lett. 22, 372–374 (1997).
  3. V. K. Mezentsev and S. K. Turitsyn, “Solitons with Gaussian tails in dispersion-managed communication systems using gratings,” Phys. Lett. A 237, 37–42 (1997).
  4. S. G. Evangelides, N. S. Bergano, and C. R. Davidson, “Intersymbol interference induced by delay ripple in fiber Bragg gratings,” in Optical Fiber Communication Conference, Vol. 4 of 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 5–7.
  5. C. Scheerer, C. Glingener, G. Fischer, M. Bohn, and W. Rosenkranz, “System impact of ripples in grating group delay,” in 1999 International Conference on Transparent Optical Networks (Institute of Electrical and Electronics Engineers, New York, 1999), pp. 33–36.
  6. Y. H. C. Kwan, P. K. A. Wai, and H. Y. Tam, “Effect of group-delay ripples on dispersion-managed soliton communication systems with chirped fiber gratings,” Opt. Lett. 26, 959–961 (2001).
  7. E. Yamada, T. Imai, T. Komukai, and M. Nakazawa, “10 Gbits/s soliton transmission over 2900 km using 1.3 μm singlemode fibres and dispersion compensation using chirped fibre Bragg gratings,” Electron. Lett. 35, 728–729 (1999).
  8. P. Li, J. Shuisheng, Y. Fengping, N. Tigang, and W. Zhi, “Long-haul WDM system through conventional single mode optical fiber with dispersion compensation by chirped fiber Bragg grating,” Opt. Commun. 222, 169–178 (2003).
  9. A. H. Gnauck, J. M. Wiesenfeld, L. D. Garrett, M. Eiselt, F. Forghieri, L. Arcangeli, B. Agogliata, V. Gusmeroli, and D. Scarano, “16×20 Gb/s, 400-km WDM transmission over NZDSF using a slope-compensating fiber-grating module,” IEEE Photon. Technol. Lett. 12, 437–439 (2000).
  10. A. Sahara, T. Komukai, E. Yamada, and M. Nakazawa, “40 Gbits/s return-to-zero transmission over 500 km of standard fibre using chirped fibre Bragg gratings with small group delay ripples,” Electron. Lett. 37, 8–9 (2001).
  11. F. Matera, V. Eramo, A. Schiffini, M. Guglielmucci, and M. Settembre, “Numerical investigation on design of wide geographical optical-transport networks based on n×40 Gb/s transmission,” J. Lightwave Technol. 21, 456–465 (2003).
  12. N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, “Enhanced power solitons in optical fibres with periodic dispersion management,” Electron. Lett. 32, 54–55 (1996).
  13. J. H. B. Nijhof, W. Forysiak, and N. J. Doran, “The averaging method for finding exactly periodic dispersion-managed solitons,” IEEE J. Sel. Top. Quantum Electron. 6, 330–336 (2000).
  14. A. Bondeson, M. Lisak, and D. Anderson, “Soliton perturbations—variational principle for the soliton parameters,” Phys. Scr. 20, 479–485 (1979).
  15. P. T. Dinda, A. B. Moubissi, and K. Nakkeeran, “Collective variable theory for optical solitons in fibers,” Phys. Rev. E 64, 016608 (2001).
  16. K. Nakkeeran, A. B. Moubissi, P. Tchofo Dinda, and S. Wabnitz, “Analytical method for designing dispersion-managed fiber systems,” Opt. Lett. 26, 1544–1546 (2001).
  17. E. Poutrina and G. P. Agrawal, “Design rules for dispersion-managed soliton systems,” Opt. Commun. 206, 193–200 (2002).
  18. K. Nakkeeran, Y. H. C. Kwan, and P. K. A. Wai, “Method to find the stationary solution parameters of chirped fiber grating compensated dispersion-managed fiber systems,” Opt. Commun. 215, 315–321 (2003).
  19. K. Nakkeeran, A. B. Moubissi, and P. Tchofo Dinda, “Analytical design of dispersion-managed fiber system with map strength 1.65,” Phys. Lett. A 308, 417–425 (2003).
  20. J. N. Kutz and P. K. A. Wai, “Ideal amplifier spacing for reduction of Gordon-Haus jitters in dispersion-managed soliton communications,” Electron. Lett. 34, 522–523 (1998).
  21. T. Yu, E. A. Golovchenko, A. N. Pilipetskii, and C. R. Menyuk, “Dispersion-managed soliton interactions in optical fibers,” Opt. Lett. 22, 793–795 (1997).
  22. A. Berntson, N. J. Doran, and J. H. B. Nijhof, “Power dependence of dispersion-managed solitons for anomalous, zero, and normal path-average dispersion,” Opt. Lett. 23, 900–902 (1998).
  23. A. H. Liang, H. Toda, and A. Hasegawa, “High-speed soliton transmission in dense periodic fibers,” Opt. Lett. 24, 799–801 (1999).
  24. S. K. Turitsyn, M. P. Fedoruk, and A. Gornakova, “Reduced-power optical solitons in fiber lines with short-scale dispersion management,” Opt. Lett. 24, 869–871 (1999).
  25. L. J. Richardson, W. Forysiak, and N. J. Doran, “Dispersion-managed soliton propagation in short-period dispersion maps,” Opt. Lett. 25, 1010–1012 (2000).
  26. A. B. Moubissi, K. Nakkeeran, P. Tchofo Dinda, and S. Wabnitz, “Average dispersion decreasing densely dispersion-managed fiber transmission systems,” IEEE Photon. Technol. Lett. 14, 1279–1281 (2002).
  27. H. Chotard, Y. Painchaud, A. Mailloux, M. Morin, F. Trépanier, and M. Guy, “Group delay ripple of cascaded Bragg grating gain flattening filters,” IEEE Photon. Technol. Lett. 14, 1130–1132 (2002).
  28. M. Ibsen and R. Feced, “Fiber Bragg gratings for puredispersion-slope compensation,” Opt. Lett. 28, 980–982 (2003).
  29. A. K. Atieh, P. Myslinkski, J. Chrostowski, and P. Galko, “Measuring the Raman time constant (TR) for soliton pulses in standard single-mode fiber,” J. Lightwave Technol. 17, 216–221 (1999).
  30. P. T. Dinda, K. Nakkeeran, and A. Labruyére, “Suppression of soliton self-frequency shift by upshifted filtering,” Opt. Lett. 27, 382–384 (2002).
  31. S. K. Turitsyn and V. K. Mezentsev, “Chirped solitons with strong confinement in transmission links with in-line fiber Bragg gratings,” Opt. Lett. 23, 600–602 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited