OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 4 — Apr. 1, 2004
  • pp: 729–738

Wavelength- and temperature-dependent measurement of refractive indices

Jan Jasny, Bernhard Nickel, and Pawel Borowicz  »View Author Affiliations

JOSA B, Vol. 21, Issue 4, pp. 729-738 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (199 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new method for determination of the refractive index of any transparent solvent or glass was developed and tested for use at temperatures of 133–293 K in the ultraviolet and visible spectral ranges. The wavelength and temperature dependencies of the refractive indices of several solvents and of fused silica are reported. The data obtained for tetrachloromethane and fused silica are compared with those available in the literature. The advantages and limitations of the method are discussed, based on the accuracy of the data presented. Knowing the values of refractive indices of organic solvents should be useful in luminescence spectroscopy.

© 2004 Optical Society of America

OCIS Codes
(120.5710) Instrumentation, measurement, and metrology : Refraction
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(160.4890) Materials : Organic materials
(160.6030) Materials : Silica

Jan Jasny, Bernhard Nickel, and Pawel Borowicz, "Wavelength- and temperature-dependent measurement of refractive indices," J. Opt. Soc. Am. B 21, 729-738 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Mavrodineau, J. I. Schultz, and O. Menis, eds., Accuracy in Spectrophotometry and Luminescence Measurements (U.S. Government Printing Office, Washington, D.C., 1973), pp. 238–240.
  2. J. Jasny, J. Sepioł, T. Imgartinger, M. Traber, A. Renn, and U. P. Wild, “Fluorescence microscopy in superfluid helium: single molecule imaging,” Rev. Sci. Instrum. 67, 1425–1430 (1996). [CrossRef]
  3. J. Jasny and J. Sepioł, “Single molecules observed by immersion mirror objective. A novel method of finding the orientation of radiating dipole,” Chem. Phys. Lett. 273, 439–443 (1997). [CrossRef]
  4. K. Sasaki, M. Kashioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992). [CrossRef]
  5. P. Viravathana and D. W. M. Marr, “Optical trapping of titania/silica core-shell colloidal particles,” J. Clim. 221, 301 (2000).
  6. K. Sasaki and H. Misawa, “Laser trapping and scanning micromanipulation of fine particles,” in Microchemistry: Spectroscopy and Chemistry in Small Domains, H. Masuhara, F. C. De Schryver, N. Kitamura, and N. Tamai, eds. (North-Holland, Amsterdam, 1994), pp. 23–34.
  7. K. Sasaki, M. Koshioka, and H. Masuhara, “Three-dimensional space- and time-resolved fluorescence spectroscopy,” Appl. Spectrosc. 45, 1041–1045 (1991). [CrossRef]
  8. P. Borowicz, J. Hotta, K. Sasaki, and H. Masuhara, “Chemical and optical mechanism of microparticle formation of poly(N-vinylcarbazole) in N, N-dimethylformamide by photon pressure of a focused near-infrared laser beam,” J. Phys. Chem. B 102, 1896–1901 (1998). [CrossRef]
  9. H. Misawa and S. Judokazis, “Photophysics and photochemistry of a laser manipulated microparticle,” Prog. Polym. Sci. 24, 665–697 (1999). [CrossRef]
  10. H. M. Przewłocki, “Theory and applications of internal photoemission in the MOS systems at low electric fields,” Solid-State Electron. 45, 1241–1250 (2001). [CrossRef]
  11. A. Kudła, “Fotoeletryczne metody wyznaczenia wysokosci barier potencjalu w struturze MOS,” Ph.D. dissertation to (Prace ITE, Warsaw, 1998), pp. 39–49.
  12. S. H. Lee, I. Lee, and J. Yi, “Silicon nitride films prepared by high-density plasma chemical vapor deposition for solar cell applications,” Surf. Coat. Technol. 153, 67–71 (2002). [CrossRef]
  13. G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coating,” Mater. Sci. Eng. 78, 135–139 (2000). [CrossRef]
  14. J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Comp. Neurol. 256&257, 6–16 (1999).
  15. K. Hirao and K. Miura, “Writing waveguides and gratings in silica related materials by femtosecond laser,” J. Non-Cryst. Solids 239, 91–95 (1998). [CrossRef]
  16. B. G. Potter, Jr. and K. Simons-Potter, “Photosensitive point defect in optical glasses: science and applications,” Nucl. Instrum. Methods Phys. Res. B 166–167, 771–781 (2000). [CrossRef]
  17. K. Miura, H. Inoue, J. Qiu, T. Mitsuyu, and K. Hirao, “Optical waveguides induced in inorganic glasses by a femtosecond laser,” Mol. Instrum. Methods Phys. Res. B 141, 726–732 (1998). [CrossRef]
  18. J. Nishii, K. Kintaka, H. Nishiyama, and M. Takahashi, “Photosensitive and athermal glasses for optical channel waveguides,” J. Non-Cryst. Solids 326&327, 464–471 (2003). [CrossRef]
  19. F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthhélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998). [CrossRef]
  20. M. B. J. Diemeer, “Polymeric thermo-optic space switches for optical communication,” Opt. Mater. 9, 192–200 (1998). [CrossRef]
  21. J. Qiu, K. Miura, H. Inouye, J. Nishii, and K. Hirao, “Three-dimensional optical storage inside a silica glass by using a focused femtosecond pulsed laser,” Nucl. Instrum. Methods Phys. Res. B 141, 699–703 (1998). [CrossRef]
  22. V. Berger, “From photonic band gaps to refractive index engineering,” Opt. Mater. 11, 131–142 (1999). [CrossRef]
  23. S. Juodkazis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H.-B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197–198, 705–709 (2002). [CrossRef]
  24. B. Nickel and A. A. Ruth are preparing a manuscript entitled “Application of Smoluchowski’s generalized theory to the kinetics of triplet–triplet annihilation of anthracene in viscous solution after long-pulse excitation,” to be submitted to Phys. Chem. Chem. Phys.
  25. J. B. Birks, Photophysics of Aromatic Molecules (Wiley-Interscience, London, 1970), pp. 372–397.
  26. Ref. 25, pp. 567–594.
  27. P. Avakian and R. E. Merrifield, “Experimental determination of the diffusion length of triplet excitons in anthracene crystals,” Phys. Rev. Lett. 13, 541–543 (1964). [CrossRef]
  28. B. Nickel, “A modification of the Avakian–Merrifield method for the determination of the diffusion constants of triplet states,” Ber. Bunsenges. Phys. Chem. 76, 582–584 (1972).
  29. B. Nickel and U. Nickel, “The diffusion constant of pyrene molecules in the triplet state in glycerol from −17 °C to +15 °C,” Ber. Bunsenges. Phys. Chem. 76, 584–589 (1972).
  30. G. E. Meyer and B. Nickel, “Diffusion coefficients of aromatic hydrocarbons in their lowest triplet state: anthracene in hexane, octane, hexadecane, perfluorehexane, and methycyclohexane, pyrene and 9, 10-diphenylantracene in hexane,” Z. Naturforsch. 35A, 503–520 (1980).
  31. B. Nickel, H. E. Wilhelm, and C. P. Jaensch, “Effect of the Förster energy transfers S1+S1→S0+Sn and S1+ T1→S0+Tm on the time dependence of the delayed fluorescence from aromatic compounds: anti-Smoluchowski and Smoluchowski temporal behavior,” Opt. Spectrosc. 83, 541–556 (1997).
  32. B. Nickel, K. H. Grellmann, J. S. Stephan, and P. J. Walla, “Keto-enol tautomerism in the triplet states of hydroxyphenylbenzoxazoles in an alkene glass: hydrogen tunneling and isotope effects down to 2 K,” Ber. Bunsenges. Phys. Chem. 102, 436–447 (1998). [CrossRef]
  33. C. Synowietz, ed, Organische Verbindungen, Vol. II of Taschenbuch für Physiker und Chemiker (Springer-Verlag, Berlin, 1972), p. 764.
  34. H. G. Boit, ed., Beilsteins Handbuch der Organischen Chemie (Springer-Verlag, Berlin, 1972), Suppl. 4, Vol. I, Sec. I, p. 58.
  35. S. L. Murov, I. Carmichael, and G. L. Hug, eds., Handbook of Photochemistry (Marcel Dekker, New York, 1993), p. 284.
  36. M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds., Handbook of Optics (McGraw-Hill, New York, 1995), Vol. II, p. 33.69.
  37. E. M. Voronkova, B. N. Gretshushnikov, G. I. Distler, and I. P. Petrov, Optitsheskiie Materaly dla Infrakrasnoi Techniki (Izdatelstvo Nauka, Moscow, 1965), p. 148.
  38. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford 1970), p. 96.
  39. C. Shakher and A. K. Nirala, “A review on refractive index and temperature profile measurements using laser based interferometric techniques,” Opt. Lasers Eng. 31, 455–491 (1999). [CrossRef]
  40. S. Y. El-Zaiat, “Interferometric determination of refraction and dispersion of human blood-serum, saliva, sweat and urine,” Opt. Laser Technol. 35, 55–60 (2003). [CrossRef]
  41. R. Ghazy, B. El-Baradie, A. El-Shaer, and F. El-Mekaweg, “Measurements of the refractive indices and refractive indices increment of synthetic PMMA solutions at 488 nm,” Opt. Laser Technol. 31, 335–340 (1999). [CrossRef]
  42. H. El Ghandoor, E. Hegazi, I. Nasser, and G. M. Behery, “Measuring of the refractive index of a crude oil using a capillary tube interferometer,” Opt. Laser Technol. 35, 361–367 (2003). [CrossRef]
  43. D. Qiu and V. K. Dihr, “Measurement of refractive index of PF-5060,” Exp. Therm. Fluid Sci. 19, 168–171 (1999). [CrossRef]
  44. A. Garcia-Valenzuela, M. Peña-Gomar, C. Garcia-Segungo, and V. Flandes-Aburto, “Dynamic reflectometry near the critical angle for high-resolution sensing of the index of refraction,” Sens. Actuators B 52, 236–242 (1998). [CrossRef]
  45. W. Shi, C. Fang, X. Yin, Q. Pan, X. Sun, Q. Gu, and J. Yu, “Refractive index dispersion measurement on nonlinear optical polymer using a V-prism refractometer,” Opt. Lasers Eng. 32, 41–47 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited