OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 4 — Apr. 1, 2004
  • pp: 739–743

Optical spectroscopy and gain properties of Nd3+-doped oxide glasses

Zhonghong Jiang, Jianhu Yang, and Shixun Dai  »View Author Affiliations

JOSA B, Vol. 21, Issue 4, pp. 739-743 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (156 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical absorption and emission spectra and fluorescence lifetimes were measured for Nd3+ in a series of five oxide glasses. Spectroscopic parameters such as the stimulated-emission cross section, the effective bandwidth of the  4F3/2 4I11/2 transition, and the radiative lifetime of the  4F3/2 level were obtained, and their dependence on the composition of the glass is described. In addition, the relative gain properties for the  4F3/24I11/2 transition in various glasses are evaluated by the classic gain equation model.

© 2004 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.3130) Materials : Integrated optics materials
(160.4670) Materials : Optical materials
(160.5690) Materials : Rare-earth-doped materials
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

Zhonghong Jiang, Jianhu Yang, and Shixun Dai, "Optical spectroscopy and gain properties of Nd3+-doped oxide glasses," J. Opt. Soc. Am. B 21, 739-743 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. J. Miniscalco, “Erbium doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9, 234–250 (1991). [CrossRef]
  2. C. A. Brackett, “Foreword: Is there an emerging consensus on WDM networking?” J. Lightwave Technol. 14, 936–941 (1996).
  3. K. P. Hansen, M. D. Nielsen, and A. Bjarldev, “Design optimization of erbium doped fibers for use in L-band amplifiers,” Electron. Lett. 36, 1685–1686 (2000). [CrossRef]
  4. J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broadband, 1.6 μm Er3+ doped silica fiber amplifier,” Electron. Lett. 26, 1645–1646 (1990). [CrossRef]
  5. M. Yamada, H. Ono, and Y. Ohishi, “Low noise, broadband Er3+ doped silica fiber amplifier,” Electron. Lett. 34, 1491–1491 (1998). [CrossRef]
  6. Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-μm broadband amplification,” Opt. Lett. 23, 274–276 (1998). [CrossRef]
  7. S. Shen, M. Naftaly, and A. Jha, “Tungsten-tellurite—a host glass for broadband EDFA,” Opt. Commun. 205, 101–105 (2002). [CrossRef]
  8. J. H. Yang, S. X. Dai, N. L. Dai, S. Q. Xu, L. Wen, L. L. Hu, and Z. H. Jiang, “Effect of Bi2O3 on the spectroscopic properties of erbium-doped bismuth silicate glasses,” J. Opt. Soc. Am. B 20, 810–815 (2003). [CrossRef]
  9. S. Tanabe, N. Sugimoto, S. Ito, and T. Hanada, “Broadband 1.5 μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier,” J. Lumin. 87–89, 670–672 (2000). [CrossRef]
  10. S. Jiang, T. Luo, B.-C. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghambarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263&264, 364–368 (2000). [CrossRef]
  11. X. Feng, S. Tanabe, and T. Hanada, “Spectroscopic properties and thermal stability of Er3+-doped germanotellurite glasses for broadband fiber amplifiers,” J. Am. Ceram. Soc. 84, 165–171 (2001). [CrossRef]
  12. A. Mori, T. Sakamoto, K. Shikano, K. Kobayashi, K. Hoshino, and M. Shimizu, “Gain flattened Er3+ doped tellurite fiber amplifier for WDM signals in the 1581–1616 nm wavelength region,” Electron. Lett. 36, 621–622 (2000). [CrossRef]
  13. Y. B. Lu and P. L. Chu, “Gain flattening by using dual-core fiber in erbium doped fiber amplifier,” IEEE Photonics Technol. Lett. 12, 1616–1617 (2000). [CrossRef]
  14. R. G. Smart, J. L. Zyskind, and D. J. DiGiovanni, “Experimental comparison of 980 nm and 1480 nm pumped saturated in-line erbium doped fiber amplifiers suitable for long-haul soliton transmission systems,” IEEE Photonics Technol. Lett. 5, 770–773 (1993). [CrossRef]
  15. M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphotellurite glasses,” J. Appl. Phys. 52, 2944–2949 (1981). [CrossRef]
  16. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962). [CrossRef]
  17. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962). [CrossRef]
  18. W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I. Pr3+, Nd3+, Er3+, Tm3+, and Yb3+,” J. Chem. Phys. 42, 3797–3806 (1965). [CrossRef]
  19. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968). [CrossRef]
  20. T. V. R. Rao, R. R. Reddy, Y. N. Ahammed, M. Parandamaiah, N. S. Hussain, S. Buddhudu, and K. Purandar, “Luminescence properties of Nd3+:TeO2–B2O3–P2O5–Li2O glass,” Infrared Phys. Technol. 41, 247–258 (2000). [CrossRef]
  21. M. J. Weber and T. E. Varitimos, “Optical spectra and intensities of Nd3+ in YAlO3,” J. Appl. Phys. 42, 4996–5005 (1971). [CrossRef]
  22. M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare earth ions in lead germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998). [CrossRef]
  23. H. Takebe, K. Morinaga, and T. Izumitani, “Correlation between radiative transition probabilities of rare earth ions and composition in oxide glasses,” J. Non-Cryst. Solids 178, 58–63 (1994). [CrossRef]
  24. R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/24I11/2 induced emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. QE-12, 102–111 (1976). [CrossRef]
  25. M. J. Weber, T. E. Varitimos, and B. H. Matsinger, “Optical intensities of rare earth ions in yttrium orthoaluminate,” Phys. Rev. B 8, 47–53 (1973). [CrossRef]
  26. D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd–Ofelt analysis of the Er3+ (4f11) absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93, 2041–2046 (2003). [CrossRef]
  27. W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E. Stokowski, “Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet,” J. Opt. Soc. Am. B 3, 102–113 (1986). [CrossRef]
  28. W. F. Krupke, “Induced emission cross sections in neodymium laser glasses,” IEEE J. Quantum Electron. QE-10, 450–457 (1974). [CrossRef]
  29. J. H. Campell and T. I. Suratwala, “Nd-doped phosphate glasses for high energy/high-peak-power lasers,” J. Non-Cryst. Solids 263&264, 318–341 (2000). [CrossRef]
  30. R. Reisfeld, E. Greenberg, R. N. Brown, and M. G. Drexhage, “Fluorescence of europium (III) in a flouride glass containing zirconium,” Chem. Phys. Lett. 95, 91–94 (1983). [CrossRef]
  31. M. E. Vance, “Saturation and excited state absorption in neodymium laser glass,” IEEE J. Quantum Electron. QE-6, 249–253 (1970). [CrossRef]
  32. D. J. DiGiovanni and B. Palsdottir, “Performance of high-concentration erbium doped fiber amplifiers,” IEEE Photonics Technol. Lett. 11, 973–975 (1999). [CrossRef]
  33. R. Rolli, A. Chiasera, M. Montagna, E. Moser, S. Ronchin, S. Pelli, G. C. Righini, A. Jha, V. K. Tikhomirov, S. A. Tikhomirova, C. Duverger, P. Galinetto, and M. Ferrari, “Rare-earth-activated fluoride and tellurite glasses: optical and spectroscopic properties,” in Rare-Earth-Doped Materials and Devices V, S. Jiang, ed., Proc. SPIE 4282, 109–122 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited