OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 4 — Apr. 1, 2004
  • pp: 744–752

Infrared-to-visible upconversion of Er3+ ions in GeO2–PbO–Nb2O5 glasses

Rolindes Balda, Angel J. Garcia-Adeva, Joaquin Fernández, and José M. Fdez-Navarro  »View Author Affiliations

JOSA B, Vol. 21, Issue 4, pp. 744-752 (2004)

View Full Text Article

Acrobat PDF (263 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the infrared-to-visible upconversion luminescence of Er3+-doped lead–niobium–germanate glasses (GeO2–PbO–Nb2O5) with different Er2O3 concentrations (0.5, 1, 2, and 3 wt.%) under continuous-wave and pulsed-laser excitation in the near-infrared region inside the 4I9/2 level. Intense green emission due to the (2H11/2, 4S3/2)→4I15/2 transitions was observed at room temperature together with a weak red emission corresponding to the 4F9/24I15/2 transition. These upconversion emissions are attributed to a two-photon process. The time evolution of the green emission from the 4S3/2 level indicates that energy-transfer upconversion and excited-state absorption are responsible for the upconversion luminescence. The increase of the weak red emission with increasing Er2O3 concentration, together with its temporal behavior under infrared excitation, suggests that for Er2O3 concentrations higher than 1 wt.%, the upconverted red emission is the result of multiphonon relaxation from the 4S3/2 level and energy-transfer processes.

© 2004 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.4670) Materials : Optical materials
(160.5690) Materials : Rare-earth-doped materials
(190.7220) Nonlinear optics : Upconversion
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

Rolindes Balda, Angel J. Garcia-Adeva, Joaquin Fernández, and José M. Fdez-Navarro, "Infrared-to-visible upconversion of Er3+ ions in GeO2–PbO–Nb2O5 glasses," J. Opt. Soc. Am. B 21, 744-752 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. G. L. Vossler, C. L. Brooks, and K. A. Winik, “Planar Er:Yb glass ion exchanged waveguide laser,” Electron. Lett. 31, 1162–1163 (1995).
  2. T. H. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27, 1785–1786 (1991).
  3. J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouth, A. Beguin, C. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
  4. A. Pollack and D. B. Chang, “Ion-pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2, and CaF2 crystals,” J. Appl. Phys. 64, 2885–2893 (1988).
  5. S. Tanabe, K. Hirao, and N. Soga, “Upconversion fluorescences of TeO2- and Ga2O3-based oxide glasses containing Er3+,” J. Non-Cryst. Solids 122, 79–82 (1990).
  6. B. R. Reddy and P. Venkateswarlu, “Infrared to visible energy upconversion in Er3+-doped oxide glass,” Appl. Phys. Lett. 64, 1327–1329 (1994).
  7. S. L. J. Ribeiro, J. Dexpert-Ghys, B. Piriou, and V. R. Mastelaro, “Structural studies in lead-germanate glasses: EXAFS and vibrational spectroscopy,” J. Non-Cryst. Solids 159, 213–221 (1993).
  8. J. E. Canale, R. A. Condrate, Sr., K. Nassau, and B. C. Cornilsen, “Characterization of various glasses in the binary PbO–GeO2 and Bi2O3–GeO2 systems,” J. Can. Ceram. Soc. 55, 50–56 (1986).
  9. M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare-earth ions in lead-germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
  10. J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066–8075 (1993).
  11. J. McDougall, D. B. Hollis, and M. J. P. Payne, “The 1.82 μm emission of Tm3+ in germanium based oxide glass,” Phys. Chem. Glasses 36, 52 (1995).
  12. D. P. Shepherd, D. J. B. Brinck, J. Wang, A. C. Tropper, D. C. Hanna, G. Kakarantzas, and P. D. Townsend, “1.9-μm operation of a Tm:lead germanate glass waveguide laser,” Opt. Lett. 19, 954–956 (1994).
  13. Z. Pan, S. H. Morgan, A. Loper, V. King, B. H. Long, and W. E. Collins, “Infrared to visible upconversion in Er3+-doped lead-germanate glass: effects of Er3+ ion concentration,” J. Appl. Phys. 77, 4688–4692 (1995).
  14. R. Balda, J. Fernández, M. Sanz, A. De Pablos, J. M. Fdez-Navarro, and J. Mugnier, “Laser spectroscopy of Nd3+ ions in GeO2–PbO–Bi2O3 glasses,” Phys. Rev. B 61, 3384–3390 (2000).
  15. R. Balda, M. Sanz, J. Fernández, and J. M. Fernández Navarro, “Energy transfer and upconversion processes in Nd3+-doped GeO2–PbO–Nb2O5 glass,” J. Opt. Soc. Am. B 17, 1671–1677 (2000).
  16. R. Balda, J. Fernández, A. De Pablos, and J. M. Fdez-Navarro, “Spectroscopic properties of Pr3+ ions in lead germanate glass,” J. Phys. Condens. Matter 11, 7411–7421 (1999).
  17. R. Balda, I. Sáez de Ocáriz, J. Fernández, J. M. Fdez-Navarro, and M. A. Arriandiaga, “Spectroscopy and orange-blue frequency upconversion in Pr3+ doped GeO2–PbO–Nb2O5 glass,” J. Phys. Condens. Matter 12, 10623–10632 (2000).
  18. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
  19. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
  20. W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412–4423 (1968).
  21. Z. Pan, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79, 8906–8913 (1996).
  22. M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–272 (1967).
  23. M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
  24. F. E. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61, 758–786 (1973).
  25. C. Wright, “Up-conversion and excited state energy transfer in rare earth doped materials,” in Radiationless Processes in Molecules and Condensed Phases, F. K. Fong, ed. (Springer-Verlag, Heidelberg, Germany, 1976), pp. 239–295.
  26. M. P. Hehlen, G. Frei, and H. U. Güdel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1%Er3+,” Phys. Rev. B 50, 16264–16273 (1994).
  27. X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
  28. X. Chen, T. Nguyen, Q. Luu, and B. Di Bartolo, “Concentration dependence of visible-upconversion luminescence in the laser crystal Gd3Ga5O12 doped erbium,” J. Lumin. 85, 295–299 (2000).
  29. D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Er3+:Yb3+ codoped lead fluoroindogallate glasses for mid infrared and upconversion applications,” J. Appl. Phys. 85, 2502–2507 (1999).
  30. In fact, n5 (t) contains a term of the form exp [n30 γIII τ3 exp (−t/τ3)], but this gives an exponentially small contribution to the temporal behavior of n4 (t) that has been neglected. The same happens with process II analyzed below.
  31. It is possible to find analytical solutions to all orders in γ in terms of the incomplete gamma function (also for the model that will be analyzed next). However, the solutions are cumbersome and not as easy to interpret as the approximations presented here.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited