OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 4 — Apr. 1, 2004
  • pp: 753–760

Ultraviolet-light-gating two-color photorefractive effect in Mg-doped near-stoichiometric LiNbO3

Yasuo Tomita, Steven Sunarno, and Guoquan Zhang  »View Author Affiliations

JOSA B, Vol. 21, Issue 4, pp. 753-760 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (290 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the ultraviolet- (UV-) light-induced two-color photorefractivity in a near-stoichiometric LiNbO3 crystal doped with Mg above the damage-resistant threshold concentration. Measurements of holographic recording and optical fixing dynamics with a 365-nm gating beam show that complementary shallow and deep gratings are formed during recording and that at least four defect centers are involved in the two-color holographic recording process. It is confirmed that UV-light-induced defect centers O- responsible for the broadband absorption changes act as shallow centers in UV-light-gating two-color holography. These findings indicate that the physical mechanism of the UV-light-gating two-color photorefractive effect in the crystal is essentially different from that of the recently reported two-color photorefractive effect in Mg-doped near-stoichiometric LiNbO3 with a 488-nm gating beam [Appl. Opt. 41, 4891 (2002)].

© 2004 Optical Society of America

OCIS Codes
(090.7330) Holography : Volume gratings
(160.2900) Materials : Optical storage materials
(160.3730) Materials : Lithium niobate
(160.5320) Materials : Photorefractive materials
(190.5330) Nonlinear optics : Photorefractive optics
(210.2860) Optical data storage : Holographic and volume memories

Yasuo Tomita, Steven Sunarno, and Guoquan Zhang, "Ultraviolet-light-gating two-color photorefractive effect in Mg-doped near-stoichiometric LiNbO3," J. Opt. Soc. Am. B 21, 753-760 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. F. Schirmer, O. Thiemann, and M. Wöhlecke, “Defects in LiNbO3. I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991). [CrossRef]
  2. G. Zhong, J. Jian, and Z. Wu, “Measurement of optically induced refractive index damage in lithium niobate doped with different concentrations of MgO,” J. Opt. Soc. Am. 70, 631 (1980).
  3. D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847–849 (1984). [CrossRef]
  4. B. C. Grabmaier, W. Wersing, and W. Koestler, “Properties of undoped and MgO-doped LiNbO3; correlation to the defect structure,” J. Cryst. Growth 110, 339–347 (1991). [CrossRef]
  5. T. R. Volk, V. I. Pryalkin, and N. M. Rubinina, “Optical-damage-resistant LiNbO3:Zn crystal,” Opt. Lett. 15, 996–998 (1990). [CrossRef] [PubMed]
  6. T. R. Volk and N. M. Rubinina, “A new optical damage resistant impurity in lithium niobate crystals: indium,” Ferroelectr. Lett. Sect. 14, 37–43 (1992). [CrossRef]
  7. T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, and R. Böwer, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995). [CrossRef]
  8. Y. Kong, J. Wen, and H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction–LiNbO3:In,” Appl. Phys. Lett. 66, 280–281 (1995). [CrossRef]
  9. T. Volk, M. Wöhlecke, N. Rubinina, A. Reichert, and N. Razumovski, “Optical-damage-resistant impurities (Mg, Zn, In, Sc) in lithium niobate,” Ferroelectrics 183, 291–300 (1996). [CrossRef]
  10. Y. Furukawa, K. Kitamura, S. Takekawa, K. Niwa, and H. Hatano, “Stoichiometric Mg:LiNbO3 as an effective material for nonlinear optics,” Opt. Lett. 23, 1892–1894 (1998). [CrossRef]
  11. J. Rams, A. Alcázar-de-Velasco, A. M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibitation and thresholding effects in lithium noibate above room temperature,” Opt. Commun. 178, 211–216 (2000). [CrossRef]
  12. T. Volk, N. Rubinina, and M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11, 1681–1687 (1994). [CrossRef]
  13. Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001). [CrossRef]
  14. G. Zhang, Y. Tomita, W. Xu, and C. Yang, “Nonvolatile two-color holography in indium-doped lithium niobate,” Appl. Phys. Lett. 77, 3508–3510 (2000). [CrossRef]
  15. G. Zhang, S. Sunarno, M. Hoshi, Y. Tomita, C. Yang, and W. Xu, “Characterization of two-color holography performance in reduced LiNbO3:In,” Appl. Opt. 40, 5248–5252 (2001). [CrossRef]
  16. S. Sunarno, Y. Tomita, and G. Zhang, “Light-induced absorption changes in In-doped congruent LiNbO3,” Appl. Phys. Lett. 81, 4505–4507 (2002). [CrossRef]
  17. G. Zhang, Y. Tomita, X. Zhang, and J. Xu, “Near-infrared holographic recording with quasi-nonvolatile readout in LiNbO3:In, Fe,” Appl. Phys. Lett. 81, 1393–1395 (2002). [CrossRef]
  18. J. Xu, G. Zhang, F. Li, X. Zhang, Q. Sun, S. Liu, F. Song, Y. Kong, X. Chen, H. Qiao, J. Yao, and Z. Lijuan, “Enhancement of ultraviolet photorefraction in highly magnesium-doped lithium niobate crystals,” Opt. Lett. 25, 129–131 (2000). [CrossRef]
  19. A. Winnacker, R. M. Macfarlane, Y. Furukawa, and K. Kitamura, “Two-color photorefractive effect in Mg-doped lithium niobate,” Appl. Opt. 41, 4891–4896 (2002). [CrossRef] [PubMed]
  20. G. Zhang and Y. Tomita, “Broadband absorption changes and sensitization of near-infrared photorefractivity induced by ultraviolet light in LiNbO3:Mg,” J. Appl. Phys. 91, 4177–4180 (2002). [CrossRef]
  21. D. von der Linde, O. F. Schirmer, and H. Kurz, “Intrinsic photorefractive effect in LiNbO3,” Appl. Phys. 15, 153–156 (1978). [CrossRef]
  22. G. Zhang and Y. Tomita, “Nondestructive two-color holography in LiNbO3:Mg by use of ultraviolet-induced absorption,” in 19th Congress of the International Commission for Optics: Optics for the Quality of Life, C. G. Righini and A. Consortini, eds., Proc. SPIE 4829, 349–350 (2003). [CrossRef]
  23. G. Zhang and Y. Tomita, “Ultraviolet-light-induced near-infrared photorefractivity and two-color holography in highly Mg-doped LiNbO3,” J. Appl. Phys. 93, 9456–9459 (2003). [CrossRef]
  24. M. Wöhlecke, G. Corradi, and K. Betzler, “Optical method to characterise the composition and homogeneity of lithium niobate single crystals,” Appl. Phys. B 63, 323–330 (1996). [CrossRef]
  25. N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different composition,” J. Solid State Chem. 101, 340–352 (1992). [CrossRef]
  26. I. W. Kim, S. S. Yi, V. F. Pichugin, V. Y. Yakovlev, and M. S. Dmitriev, “Luminescence and optical absorption spectra of heavily Mg-doped LiNbO3 single crystals irradiated by pulsed electron beam,” J. Cryst. Growth 253, 319–325 (2003). [CrossRef]
  27. Y. Tomita, M. Hoshi, and S. Sunarno, “Nonvolatile two-color holographic recording in Er-doped LiNbO3,” Jpn. J. Appl. Phys. 40, L1035–L1037 (2001). [CrossRef]
  28. R. Jungen, G. Angelow, F. Laeri, and C. B. Grabmaier, “Efficient ultraviolet photorefraction in LiNbO3,” Appl. Phys. A 55, 101–103 (1992). [CrossRef]
  29. F. Laeri, R. Jungen, G. Angelow, U. Vietze, T. Engel, M. Würtz, and D. Hilgenberg, “Photorefraction in the ultraviolet: materials and effects,” Appl. Phys. B 61, 351–360 (1995). [CrossRef]
  30. R. Orlowski and E. Krätzig, “Holographic method for the determination of photoinduced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351–1354 (1978). [CrossRef]
  31. A. Adibi, K. Buse, and D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001). [CrossRef]
  32. O. Momtahan and A. Adibi, “Global optimization of sensitivity and dynamic range for two-center holographic recording,” J. Opt. Soc. Am. B 20, 449–461 (2003). [CrossRef]
  33. L. Arizmendi, J. M. Cabrera, and F. Agulló-López, “Defects induced in pure and doped LiNbO3 by irradiation and thermal reduction,” J. Phys. C 17, 515–529 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited