OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 4 — Apr. 1, 2004
  • pp: 770–776

Polarization orthogonalization of interacting beams in cubic photorefractive crystals

Israel Rocha-Mendoza and Anatolii V. Khomenko  »View Author Affiliations


JOSA B, Vol. 21, Issue 4, pp. 770-776 (2004)
http://dx.doi.org/10.1364/JOSAB.21.000770


View Full Text Article

Acrobat PDF (481 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a numerical and experimental study of vectorial two-wave mixing in cubic photorefractive crystals with nonlocal gratings in the case of strong wave coupling when the grating is not uniform along the propagation direction. We demonstrate that, in important experimental configurations, vectorial two-wave mixing leads to equal intensities and orthogonal polarizations of the interacting waves at the output of the photorefractive crystal. We analyze a bidirectional vectorial light amplification and discuss the effects of the crystal orientation and optical activity. Experimental results of two-wave and multiwave mixing in a Bi12TiO20 crystal with an ac applied electric field are presented.

© 2004 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.5330) Nonlinear optics : Photorefractive optics
(190.7070) Nonlinear optics : Two-wave mixing

Citation
Israel Rocha-Mendoza and Anatolii V. Khomenko, "Polarization orthogonalization of interacting beams in cubic photorefractive crystals," J. Opt. Soc. Am. B 21, 770-776 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-4-770


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).
  2. D. D. Nolte, ed., Photorefractive Effect and Materials (Kluwer Academic, Boston, 1995).
  3. L. Solymar, D. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, 1996).
  4. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Systems (Springer-Verlag, Berlin, 1991).
  5. A. Marrakchi, R. V. Johnson, and A. R. Tanguay, Jr., “Polarization properties of photorefractive diffraction in electrooptic and optically active sillenite crystals (Bragg regime),” J. Opt. Soc. Am. B 3, 321–336 (1986).
  6. S. Mallick, D. Rouede, and A. G. Apostolidis, “Efficiency and polarization characteristics of photorefractive diffraction in a Bi12SiO20 crystal,” J. Opt. Soc. Am. B 4, 1247–1259 (1987).
  7. A. Brignon and K. H. Wagner, “Polarization state evolution and eigenmode switching in photorefractive BSO,” Opt. Commun. 101, 239–246 (1993).
  8. B. I. Sturman, D. J. Webb, R. Kowarschik, E. Shamonina, and K. H. Ringhofer, “Exact solution of the Bragg-diffraction problem in sillenites,” J. Opt. Soc. Am. B 11, 1813–1819 (1994).
  9. B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, “Theory of photorefractive vectorial wave coupling in cubic crystals,” Phys. Rev. E 60, 3332–3352 (1999).
  10. V. Yu. Krasnoperov, R. V. Litvinov, and S. M. Shandarov, “Nonunidirectional two-beam interaction in photorefractive bismuth silicate in alternating electric field,” Phys. Solid State 41, 568–572 (1999).
  11. E. Shamonina, K. H. Ringhofer, B. I. Sturman, V. P. Kamenov, G. Cedilnik, M. Esselbach, A. Kiessling, R. Kowarschik, A. A. Kamshilin, V. V. Prokofiev, and T. Jaaskelainen, “Giant momentary readout produced by switching electric fields during two-wave mixing in sillenites,” Opt. Lett. 23, 1435–1437 (1998).
  12. R. V. Litvinov, “Steady-state vectorial self-diffraction on a non-local photorefractive grating in a crystal of symmetry 43m at symmetrical transmitting geometry,” Appl. Phys. B 75, 853–860 (2002).
  13. R. V. Litvinov, “Self-diffraction of light waves by a nonlocal photorefractive grating in a crystal with the 4¯3m symmetry,” J. Exp. Theor. Phys. 95, 820–832 (2002).
  14. O. Filippov, K. H. Ringhofer, M. Shamonin, E. Shamonina, A. A. Kamshilin, E. Nippolainen, and B. I. Sturman, “Polarization properties of light-induced scattering in Bi12TiO20 crystals: theory and experiment for diagonal geometry,” J. Opt. Soc. Am. B 20, 677–684 (2003).
  15. B. I. Sturman and O. Filippov, “Solutions for vectorial beam coupling under ac field in cubic photorefractive crystals,” Phys. Rev. E 68, 036613 (2003).
  16. I. Rocha-Mendoza and A. V. Khomenko, “Bidirectional vec-torial light amplification in cubic crystals with unshifted photorefractive gratings,” Opt. Lett. 27, 1448–1450 (2002).
  17. G. A. Brost, “Photorefractive grating formations at large modulation with alternating electric fields,” J. Opt. Soc. Am. B 9, 1454–1460 (1992).
  18. A. V. Khomenko, I. Rocha-Mendoza, C. A. Fuentes-Hernández, V. V. Prokofiev, and E. Nippolainen, “Photorefractive effect in cubic crystal under a revolving electric field,” in Photorefractive Effects, Materials, and Devices, D. Nolte, G. J. Salamo, A. Siahmakoun, and S. Stepanov, eds., Vol. 62 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001) pp. 476–781.
  19. Yi Hu, K. H. Ringhofer, B. I. Sturman, “Two regimes of two-beam coupling in cubic 4¯3m crystals,” Appl. Phys. B 68, 931–936 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited