OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 4 — Apr. 1, 2004
  • pp: 777–790

Coupled-wave theory for distributed-feedback optical parametric amplifiers and oscillators

Yen-Chieh Huang and Yuan-Yao Lin  »View Author Affiliations


JOSA B, Vol. 21, Issue 4, pp. 777-790 (2004)
http://dx.doi.org/10.1364/JOSAB.21.000777


View Full Text Article

Acrobat PDF (270 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have derived a coupled-wave theory for optical parametric amplification and oscillation in a dielectric-modulated nonlinear optical material whose dielectric period is in resonance with the signal wave. The theory is fully consistent with the Manley–Rowe relation for nonlinear frequency conversion. A distributed-feedback optical parametric oscillator, while it retains most of the mode characteristics of a distributed-feedback laser, has the additional advantage of wavelength selectivity. Unlike a distributed-feedback laser amplifier, a distributed-feedback optical parametric amplifier, when it is seeded with an idler wave, does not have the problem of seed-signal feedback. The idler wave, which does not exist in an ordinary distributed-feedback laser, has a profound influence on the mode thresholds and resonance frequencies of a distributed-feedback optical parametric oscillator.

© 2004 Optical Society of America

OCIS Codes
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers

Citation
Yen-Chieh Huang and Yuan-Yao Lin, "Coupled-wave theory for distributed-feedback optical parametric amplifiers and oscillators," J. Opt. Soc. Am. B 21, 777-790 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-4-777


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
  2. H. G. Winful and G. G. Cooperman, “Self-pulsing and chaos in distributed feedback bistable optical devices,” Appl. Phys. Lett. 40, 298–300 (1982).
  3. H. G. Winful, “Pulse compression in optical fiber filters,” Appl. Phys. Lett. 46, 527–529 (1985).
  4. D. L. Mills, “Gap solitons in nonlinear periodic structures,” Phys. Rev. B 36, 947–952 (1987).
  5. I. P. Christov, H. C. Kapteyn, and M. M. Murnane, “Quasi-phase matching and attosecond pulses in modulated waveguides,” Opt. Express 7, 362–367 (2000), http://www.opticsexpress.org.
  6. M. Neviere, E. Popov, R. Reinisch, and G. Vitrant, Electromagnetic Resonances in Nonlinear Optics (Gordon & Breach, London, 2000).
  7. M. Centini, G. D’Aguanno, M. Scalora, M. J. Bloemer, C. M. Bowden, C. Sibilia, N. Mattiucci, and M. Bertolotti, “Dynamics of counterpropagating pulses in photonic crystals: enhancement and suppression of stimulated emission process,” Phys. Rev. E 67, 036617 (2003).
  8. A. C. Chiang, Y. Y. Lin, T. D. Wang, Y. C. Huang, and J. T. Shy, “Distributed feedback optical parametric oscillation by using a photorefractive grating in periodically-poled lithium niobate,” Opt. Lett. 27, 1815–1817 (2002).
  9. M. Bass, ed., Handbook of Optics (McGraw-Hill, New York, 2001), Vol. IV, p. 22.2.
  10. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
  11. R. L. Byer, “Optical parametric oscillators and non-linear materials,” in Proceedings of the Sixteenth Scottish Universities Summer School in Physics, P. G. Harper and B. S. Wherrett, eds. (Academic, New York, 1975), pp. 47–159.
  12. L. E. Myers, E. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
  13. M. A. Arbore and M. M. Fejer, “Singly resonant optical parametric oscillation in periodically poled lithium niobate waveguides,” Opt. Lett. 22, 151–153 (1997).
  14. G. P. Agrawal and N. K. Dutta, Long-Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986), p. 307.
  15. D. J. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
  16. M. Yamada and K. Sakuda, “Adjustable gain and bandwidth light amplifiers in terms of distributed-feedback structures,” J. Opt. Soc. Am. A 4, 69–76 (1987).
  17. Y. C. Huang, A. C. Chiang, Y. Y. Lin, and Y. W. Fang, “Optical parametric generation covering the sodium D1, D2 lines from a 532-nm pumped PPLN crystal with ionic-nonlinearity enhanced parametric gain,” IEEE J. Quantum Electron. 38, 1614–1619 (2002).
  18. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1988), p. 417.
  19. A. C. Chiang, T. D. Wang, Y. Y. Lin, H. C. Chui, C. W. Liu, Y. H. Chen, B. C. Wong, Y. C. Huang, J. T. Shy, Y. P. Lan, Y. F. Chen, and P. H. Tsao, “Optical parametric generation, amplification, and oscillation in monolithic periodically poled lithium niobate crystals,” submitted to IEEE J. Quantum Electron.
  20. C. H. Henry, “Performance of distributed feedback lasers designed to favor the energy gap mode,” IEEE J. Quantum Electron. QE-21, 1913–1918 (1985).
  21. H. A. Haus and C. V. Shank, “Antisymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron. 12, 532–539 (1976).
  22. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), p. 183.
  23. S. E. Harris, “Proposed backward wave oscillation in the infrared,” Appl. Phys. Lett. 9, 114–116 (1966).
  24. Y. Q. Qin, S. M. Pietralunga, and M. Martinelli, “Quasi-phase-matched difference frequency generation in a mirrorless counter propagating configuration,” J. Lightwave Technol. 19, 1298–1306 (2001).
  25. Ref. 22, p. 346.
  26. S. C. Abrahams, Properties of Lithium Niobate, Vol. 5 of EMIS Datareviews Series (INSPEC, London, 1989), Chap. 3, pp. 61–104.
  27. See, for example, E. Kreyszig, Advanced Engineering Mathematics, 8th ed. (Wiley, New York, 1999), pp. 167–169.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited