OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 4 — Apr. 1, 2004
  • pp: 798–805

Vectorial analysis of optical waveguides by the mapped Galerkin method based on E fields

Jinbiao Xiao, Xiaohan Sun, and Mingde Zhang  »View Author Affiliations

JOSA B, Vol. 21, Issue 4, pp. 798-805 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (250 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The mapped Galerkin method based on the transverse electric fields (E formulation) for vectorial analysis of optical waveguides is described. The vector wave equation is solved by using nonlinear mapping of the x-y plane and subsequent Fourier decomposition. The modal propagation constants and field distributions for rectangular waveguides and optical rib waveguides are presented. The calculated results accord well with those published earlier, which proves the accuracy and validity of the mapped Galerkin method.

© 2004 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(160.3130) Materials : Integrated optics materials
(230.7380) Optical devices : Waveguides, channeled
(260.2110) Physical optics : Electromagnetic optics

Jinbiao Xiao, Xiaohan Sun, and Mingde Zhang, "Vectorial analysis of optical waveguides by the mapped Galerkin method based on E fields," J. Opt. Soc. Am. B 21, 798-805 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Wada, T. Sakurai, and T. Nakagami, “Recent progress in optoelectric integrated circuits (OEICs),” IEEE J. Quantum Electron. 22, 805–821 (1986). [CrossRef]
  2. R. Kaiser and H. Heidrich, “Optoelectronic–photonic integrated circuits on InP between technological feasibility and commercial success,” IEICE Trans. Electron. E85-C, 970–981 (2002).
  3. T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low loss and high extinction ratio strictly nonblocking 16×16 thermo-optic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology,” J. Lightwave Technol. 9, 371–379 (2001). [CrossRef]
  4. C. Vassallo, “1993–1995 optical mode solvers,” Opt. Quantum Electron. 29, 95–114 (1997). [CrossRef]
  5. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000). [CrossRef]
  6. R. Z. L. Ye and D. O. Yevick, “Noniterative calculation of complex propagation constants in planar waveguides,” J. Opt. Soc. Am. A 18, 2819–2822 (2001). [CrossRef]
  7. M. Koshiba, K. Hayata, and M. Suzuki, “Improved finite-element formulation in terms of the magnetic field vector for dielectric waveguides,” IEEE Trans. Microwave Theory Tech. MTT-33, 227–233 (1985). [CrossRef]
  8. C. H. Henry and B. H. Verbeek, “Solution of the scalar wave equation for arbitrarily shaped dielectric waveguides by two-dimensional Fourier analysis,” J. Lightwave Technol. 7, 308–313 (1989). [CrossRef]
  9. D. Marcuse, “Solution of the vector wave equation for general dielectric waveguides by the Galerkin method,” IEEE J. Quantum Electron. 28, 459–465 (1992). [CrossRef]
  10. A. Weisshaar, J. Li, R. I. Gallawa, and I. C. Goyal, “Vector and quasi-vector solutions for optical waveguide modes using efficient Galerkin’s method with Hermite-Gauss basis functions,” J. Lightwave Technol. 13, 1795–1800 (1995). [CrossRef]
  11. S. J. Hewlett and F. Ladouceur, “Fourier decomposition method applied to mapped infinite domains: scalar analysis of dielectric waveguides down to modal cutoff,” J. Lightwave Technol. 13, 375–383 (1995). [CrossRef]
  12. M. F. Forastiere and G. C. Righini, “Improved scalar analysis of integrated optical structures by the mapped Galerkin method and Arnoldi iteration,” J. Opt. Soc. Am. A 18, 966–974 (2001). [CrossRef]
  13. K. M. Lo and E. H. Li, “Solutions of the quasi-vector wave equation for optical waveguides in a mapped infinite domain by the Galerkin method,” J. Lightwave Technol. 16, 937–944 (1998). [CrossRef]
  14. M. S. Stern, “Semi-vectorial, polarized, finite-difference method for optical waveguides with arbitrary index profiles,” IEE Proc. J. Optoelectron. 135, 56–63 (1988). [CrossRef]
  15. G. M. Berry, S. V. Burke, C. J. Smartt, T. M. Benson, and P. C. Kendall, “Exact and variational Fourier transform methods for analysis of multilayered planar waveguides,” IEE Proc. J. Optoelectron. 142, 66–75 (1995). [CrossRef]
  16. S. Sujecki, T. M. Benson, P. Sewell, and P. C. Kendall, “Novel vectorial analysis of optical waveguides,” J. Lightwave Technol. 16, 1329–1335 (1998). [CrossRef]
  17. M. S. Stern, “Rayleigh quotient solution of semivectorial field problems for optical waveguides with arbitrary index profiles,” IEE Proc. J. Optoelectron. 138, 185–190 (1991). [CrossRef]
  18. M. S. Stern, P. C. Kendall, and P. W. A. Mcllroy, “Analysis of the spectral index method for vector modes of rib waveguides,” IEE Proc. J. Optoelectron. 137, 21–26 (1990). [CrossRef]
  19. P. L. Liu and B. J. Li, “Semivectorial beam-propagation method for analyzing polarized modes of rib waveguides,” IEEE J. Quantum Electron. 28, 778–782 (1992). [CrossRef]
  20. P. L. Liu and B. J. Li, “Full vectorial mode analysis of rib waveguides by iterative Lanczos reduction,” IEEE J. Quantum Electron. 29, 2859–2863 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited