OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 4 — Apr. 1, 2004
  • pp: 806–810

Steady-state population inversion by multiphoton electromagnetically induced transparency

Yifu Zhu, Joseph Saldana, Lingling Wen, and Ying Wu  »View Author Affiliations

JOSA B, Vol. 21, Issue 4, pp. 806-810 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (160 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that electromagnetically induced transparency suppresses nonlinear absorption of all orders in a multilevel atomic system and leads to selective, multiphoton excitation of resonantly coupled atomic states. Under appropriate conditions, higher-order nonlinear absorption becomes dominant and selective steady-state population inversion is created among the resonantly coupled states.

© 2004 Optical Society of America

OCIS Codes
(020.4180) Atomic and molecular physics : Multiphoton processes
(190.5650) Nonlinear optics : Raman effect
(270.1670) Quantum optics : Coherent optical effects

Yifu Zhu, Joseph Saldana, Lingling Wen, and Ying Wu, "Steady-state population inversion by multiphoton electromagnetically induced transparency," J. Opt. Soc. Am. B 21, 806-810 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. E. Carroll and F. T. Hioe, “Three-state model driven by two laser beams,” Phys. Rev. A 36, 724–729 (1987). [CrossRef] [PubMed]
  2. P. Pillet, X. Valentin, R. L. Yuan, and J. Yu, “Adiabatic population transfer in a multilevel system,” Phys. Rev. A 48, 845–848 (1993). [CrossRef] [PubMed]
  3. A. V. Smith, “Numerical-studies of adiabatic population inversion in multilevel systems,” J. Opt. Soc. Am. B 9, 1543–1551 (1992). [CrossRef]
  4. W. Suptitz, B. C. Duncan, and P. L. Gould, “Efficient 5D excitation of trapped Rb atoms using pulses of diode-laser light in the counterintuitive order,” J. Opt. Soc. Am. B 14, 1001–1005 (1997). [CrossRef]
  5. K. Bergmann, T. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998), and references therein. [CrossRef]
  6. S. E. Harris, “Electromagentically induced transparency,” Phys. Today 50 (7), 36–37 (1997), and references therein. [CrossRef]
  7. E. Arimondo, “Coherent population trapping in laser spectroscopy,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1996), pp. 257–354.
  8. M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995). [CrossRef] [PubMed]
  9. R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dun, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673 (1995). [CrossRef] [PubMed]
  10. O. Schmidt, R. Wynands, Z. Hussein, and D. Meschede, “Steep dispersion and group velocity below c/3000 in coherent population trapping,” Phys. Rev. A 53, R27–R30 (1996). [CrossRef] [PubMed]
  11. O. Kocharovskaya, “Amplification and lasing without inversion,” Phys. Rep. 219, 175–190 (1992). [CrossRef]
  12. M. O. Scully, “From lasers and masers to phaseonium and phasers,” Phys. Rep. 219, 191–201 (1992). [CrossRef]
  13. M. O. Scully, “Enhancement of the index of refraction via quantum coherence,” Phys. Rev. Lett. 67, 1855–1858 (1991). [CrossRef] [PubMed]
  14. M. Fleischhauer, C. H. Keitel, M. O. Scully, C. Su, B. T. Ulrich, and S. Y. Zhu, “Resonantly enhanced refractive index without absorption via atomic coherence,” Phys. Rev. A 46, 1468–1487 (1992). [CrossRef] [PubMed]
  15. M. O. Scully, S. Zhu, and A. Gavrielides, “Degenerate quantum-beat laser: lasing without inversion and inversion without lasing,” Phys. Rev. Lett. 62, 2813–2816 (1989). [CrossRef] [PubMed]
  16. D. McGloin, D. J. Fulton, and M. H. Dunn, “Electromagnetically induced transparency in N-level cascade schemes,” Opt. Commun. 190, 221–229 (2001). [CrossRef]
  17. D. Petrosyan and G. Kurizki, “Symmetric photon-photon coupling by atoms with Zeeman-split sublevels,” Phys. Rev. A 65, 033833 (2002). [CrossRef]
  18. A. B. Matsko, I. Novikova, G. R. Welch, and M. S. Zubairy, “Enhancement of Kerr nonlinearity by multiphoton coherence,” Opt. Lett. 28, 96–98 (2003). [CrossRef] [PubMed]
  19. A. D. Greentree, D. Richards, J. A. Vaccaro, A. V. Durrant, S. R. de Echaniz, D. M. Segal, and J. P. Marangos, “Intensity-dependent dispersion under conditions of electromagnetically induced transparency in coherently prepared multistate atoms,” Phys. Rev. A 67, 023818 (2003). [CrossRef]
  20. Y. Wu, L. Wen, and Y. Zhu, “Efficient hyper-Raman scattering in a resonant coherent medium,” Opt. Lett. 28, 631–633 (2003). [CrossRef] [PubMed]
  21. Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing via EIT induced suppression of nonlinear photon absorptions,” Phys. Rev. A 67, 013811 (2003). [CrossRef]
  22. B. W. Shore, “Gating of population flow in resonant multiphoton excitation,” Phys. Rev. A 29, 1578–1582 (1984). [CrossRef]
  23. G. S. Agarwal and W. Harshawardhan, “Inhibition and enhancement of two photon absorption,” Phys. Rev. Lett. 77, 1039–1042 (1996). [CrossRef] [PubMed]
  24. J. Gao, S. Yang, D. Wang, X. Guo, K. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61, 023401 (2000). [CrossRef]
  25. M. Yan, E. Rickey, and Y. Zhu, “Suppression of two-photon absorption by quantum interference,” Phys. Rev. A 64, 043807 (2001). [CrossRef]
  26. A. S. Zibrov, C. Y. Ye, Y. V. Rostovsev, A. B. Matsko, and M. O. Scully, “Obervation of a three-photon electromagnetically induced transparency in hot atomic vapor,” Phys. Rev. A 65, 043817 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited