OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 4 — Apr. 1, 2004
  • pp: 811–819

Chirped excitation of optically dense inhomogeneously broadened media using Eu3+:Y2SiO5

Todd L. Harris, Mingzhen Tian, W. Randall Babbitt, Geoffrey W. Burr, John A. Hoffnagle, and C. Michael Jefferson  »View Author Affiliations

JOSA B, Vol. 21, Issue 4, pp. 811-819 (2004)

View Full Text Article

Acrobat PDF (286 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe experimentally accessible diagnostics for the excitation of optically dense frequency-selective media by linear frequency-chirped pulses using a sensitive pump–probe technique on the <sup>7</sup>F<sub>0</sub> to <sup>5</sup>D<sub>0</sub> transitions of 1.0% Eu<sup>3+</sup>:Y<sub>2</sub>SiO<sub>5</sub>. Distinct features within a transmitted cw probe pulse are used to identify the combination of linear chirp rate and optical power needed to produce an average Bloch-vector rotation of 90°. The resulting superposition state is thus an equal mixture of the ground and excited states on average. We find experimentally a linear relationship between the applied chirp-pulse intensity and chirp rate required to produce this half-inversion, a conclusion supported by both analytical calculations made using a Landau–Zener approach, and detailed computer simulations using the Maxwell–Bloch model. The numerical simulations predict experimentally observed phenomena such as the reshaping of probe pulses by stimulated emission or absorption. Finally, we quantify the relationship between chirp rate and optical power for half-inversion as a function of the optical density of the medium. The pump–probe experimental techniques and simulation analysis techniques developed here can be extended to produce an arbitrary mixture of ground and excited states, on average, in media spanning a wide range of optical density. Preparation of such media by chirped pulses for applications in quantum computing, photon-echo-based time-domain storage, and signal processing will be aided by these techniques.

© 2004 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(060.5060) Fiber optics and optical communications : Phase modulation
(160.5690) Materials : Rare-earth-doped materials
(300.6240) Spectroscopy : Spectroscopy, coherent transient

Todd L. Harris, Mingzhen Tian, W. Randall Babbitt, Geoffrey W. Burr, John A. Hoffnagle, and C. Michael Jefferson, "Chirped excitation of optically dense inhomogeneously broadened media using Eu3+:Y2SiO5," J. Opt. Soc. Am. B 21, 811-819 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. M. Macfarlane and R. M. Shelby, “Coherent transient and holeburning spectroscopy,” in Spectroscopy of Solids Containing Rare Earths, A. A. Kaplyanskii and R. M. Macfarlane, eds. (North-Holland, Amsterdam, 1987).
  2. M. D. Levenson, “Time domain optical information storage in systems capable of photochemical hole burning,” IBM Tech. Discl. Bull. 7, 2797 (1981).
  3. T. W. Mossberg, “Time-domain frequency-selective optical-data storage,” Opt. Lett. 7, 77–79 (1982).
  4. J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim, “The theory and design of chirp radars,” Bell Syst. Tech. J. 39, 745 (1960).
  5. Y. S. Bai and T. W. Mossberg, “Photon echo optical pulse compression,” Appl. Phys. Lett. 45, 1269–1272 (1984).
  6. Y. S. Bai and T. W. Mossberg, “Experimental studies of photon-echo pulse compression,” Opt. Lett. 11, 30–32 (1986).
  7. Y. S. Bai, W. R. Babbitt, and T. W. Mossberg, “Coherent transient optical pulse-shape storage recall using frequency-swept excitation pulses,” Opt. Lett. 11, 724–726 (1986).
  8. T. Wang, H. Lin, and T. W. Mossberg, “Optical bit-rate conversion and bit-stream time-reversal by the use of swept-carrier frequency-selective optical-data storage techniques,” Opt. Lett. 20, 2033–2035 (1995).
  9. K. D. Merkel and W. R. Babbitt, “Chirped-pulse programming of optical coherent transient true-time delays,” Opt. Lett. 23, 528–530 (1998).
  10. R. W. Olson, H. W. H. Lee, F. G. Patterson, and M. D. Fayer, “Optical-density effects in photon-echo experiments,” J. Chem. Phys. 76, 31–39 (1982).
  11. S. B. Altner, G. Zumofen, U. P. Wild, and M. Mitsunaga, “Photon-echo attenuation in rare-earth-ion-doped crystals,” Phys. Rev. B 54, 17493–17507 (1996).
  12. M. Azadeh, C. S. Cornish, W. R. Babbitt, and L. Tsang, “Efficient photon echoes in optically thick media,” Phys. Rev. A 57, 4662–4668 (1998).
  13. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, New York, 1975).
  14. N. Ohlsson, R. K. Mohan, and S. Kroll, “Quantum computer hardware based on rare-earth-ion-doped inorganic crystals,” Opt. Commun. 201, 71–77 (2002).
  15. M. Nilsson, L. Levin, N. Ohlsson, T. Christiansson, and S. Kroll, “Initial experiments concerning quantum information processing in rare-earth-ion doped crystals,” Phys. Scr. T102, 178–185 (2002).
  16. L. D. Landau, “Zur Theorie der Energieübertragung II,” Phys. Z. Sowjetunion 2, 46 (1932).
  17. C. Zener, “Non-adiabatic crossing of energy levels,” Proc. R. Soc. London Ser. A 137, 696 (1932).
  18. N. V. Vitanov and B. M. Garraway, “Landau–Zener model: effects of finite coupling duration,” Phys. Rev. A 53, 4288 (1996).
  19. For mathematical convenience, Vitanov and Garraway (Ref. 18) chose to define Ω0 [rad/s ] as half of the laboratory Rabi frequency on resonance and β2 [rad/s 2 ] as half of the laboratory laser chirp rate, leading to a definition of the scaled dimensionless-coupling strength of ω=Ω0 /β. We have chosen quantities and units more convenient to the laboratory such that Ω0 [s −1 ] is the full laboratory Rabi frequency of the chirp, and Bcc [s −2 ] is the full laboratory chirp rate leading to definition of dimensionless-coupling strength given in Eq. (1). For comparisons with results in Ref. 26, it is easy to verify that Φ=ω/π.
  20. R. P. Feynman, F. L. Vernon, and R. W. Hellwarth, “Geometrical representation of the Schrodinger equation for solving maser problems,” J. Appl. Phys. 28, 49–52 (1957).
  21. R. Yano, M. Mitsunaga, and N. Uesugi, “Ultralong optical dephasing time in Eu3+:Y2SiO5,” Opt. Lett. 16, 1884–1886 (1991).
  22. R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179–2181 (1994).
  23. R. Yano, M. Mitsunaga, and N. Uesugi, “Nonlinear laser spectroscopy of Eu3+:Y2SiO5 and its application to time-domain optical memory,” J. Opt. Soc. Am. B 9, 992–997 (1992).
  24. F. Konz, Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, R. L. Hutcheson, and R. M. Macfarlane, “Temperature and concentration dependence of optical dephasing, spectral hole lifetime, and anisotropic absorption in Eu3+:Y2SiO5,” Phys. Rev. B 68, 085109 (2003).
  25. Y. Sun, G. M. Wang, R. L. Cone, R. W. Equall, and M. J. M. Leask, “Symmetry considerations regarding light propagation and light polarization for coherent interactions with ions in crystals,” Phys. Rev. B 62, 15443–15451 (2000).
  26. B. A. Maximov, V. V. Illyukhin, Yu. A. Kharitonov, and N. V. Belov, “Crystal structure of yttrium oxyorthosilicate Y2O3⋅SiO2=Y2SiO5 dual function of yttrium,” Sov. Phys. Crystallogr. 15, 806–812 (1971).
  27. C. Li, C. Wyon, and R. Moncorge, “Spectroscopic properties and fluorescence dynamics of Er3+ and Yb3+ in Y2SiO5,” IEEE J. Quantum Electron. 28, 1209–1221 (1992).
  28. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97–105 (1983).
  29. R. L. Shoemaker, “Coherent transient infrared spectroscopy,” in Laser and Coherence Spectroscopy, J. I. Steinfield, ed. (Plenum, New York, 1978), pp. 197–317.
  30. Y. Sun, P. B. Sellin, C. M. Jefferson, and R. L. Cone, “Oscillator strength measurements on Eu 3+ :Y 2 SiO 5” (unpublished).
  31. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  32. G. W. Burr, T. L. Harris, W. R. Babbitt, and C. M. Jefferson, “Incorporating excitation-induced dephasing into the Maxwell–Bloch numerical modeling of photon echoes,” and references therein, J. Lumin. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited