OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 4 — Apr. 1, 2004
  • pp: 851–857

Design and characterization of semiconductor-doped silica film saturable absorbers

Rohit P. Prasankumar, Ingmar Hartl, Juliet T. Gopinath, Erich P. Ippen, James G. Fujimoto, Paul Mak, and Michael F. Ruane  »View Author Affiliations


JOSA B, Vol. 21, Issue 4, pp. 851-857 (2004)
http://dx.doi.org/10.1364/JOSAB.21.000851


View Full Text Article

Acrobat PDF (501 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nonepitaxially grown, rf sputtered semiconductor-doped silica film saturable absorbers have recently been developed as a versatile, easy to fabricate, cost-effective alternative to epitaxially grown semiconductor saturable absorbers. Characterization of their linear and nonlinear optical properties reveals trends that permit the development of guidelines for optimizing these devices for a particular laser system. Operation near the onset of absorption, the use of films with large nanocrystallites, and high rapid thermal annealing temperatures result in saturation fluences as low as 640 μJ/cm2 at 1.54 μm. These materials can be used to start Kerr-lens mode locking in a wide range of solid-state lasers.

© 2004 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(320.7090) Ultrafast optics : Ultrafast lasers
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

Citation
Rohit P. Prasankumar, Ingmar Hartl, Juliet T. Gopinath, Erich P. Ippen, James G. Fujimoto, Paul Mak, and Michael F. Ruane, "Design and characterization of semiconductor-doped silica film saturable absorbers," J. Opt. Soc. Am. B 21, 851-857 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-4-851


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. E. Spence, P. N. Kean, and W. Sibbett, “60-fs pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16, 42–44 (1991).
  2. V. Magni, G. Cerullo, S. De Silvestri, and A. Monguzzi, “Astigmatism in Gaussian-beam self-focusing and in resonators for Kerr-lens mode locking,” J. Opt. Soc. Am. B 12, 476–485 (1995).
  3. H. A. Haus and E. P. Ippen, “Self-starting of passively mode-locked lasers,” Opt. Lett. 16, 1331–1333 (1991).
  4. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber,” Opt. Lett. 17, 505–507 (1992).
  5. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
  6. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454–464 (1996).
  7. I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, “Semiconductor saturable absorber mirrors supporting sub-10 fs pulses,” Appl. Phys. B 65, 137–150 (1997).
  8. D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, “Semiconductor saturable-absorber mirror assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime,” Opt. Lett. 24, 631–633 (1999).
  9. R. Fluck, I. D. Jung, G. Zhang, F. X. Kärtner, and U. Keller, “Broadband saturable absorber for 10-fs pulse generation,” Opt. Lett. 21, 743–745 (1996).
  10. S. Schön, M. Haiml, L. Gallmann, and U. Keller, “GaAs absorber layer growth for broadband AlGaAs/flouride SESAMs,” J. Cryst. Growth 227, 172–176 (2001).
  11. N. Sarukura, Y. Ishida, T. Yanagawa, and H. Nakano, “All solid-state cw passively mode-locked Ti:sapphire laser us- ing a colored glass filter,” Appl. Phys. Lett. 57, 229–230 (1990).
  12. P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped glasses as saturable absorbers for mode locking of a Cr:forsterite laser,” Appl. Phys. Lett. 71, 1595–1597 (1997).
  13. I. P. Bilinsky, R. P. Prasankumar, and J. G. Fujimoto, “Self-starting mode locking and Kerr-lens mode locking of a Ti:Al2O3 laser by use of semiconductor-doped glass structures,” J. Opt. Soc. Am. B 16, 546–549 (1999).
  14. I. P. Bilinsky, J. G. Fujimoto, J. N. Walpole, and L. J. Misaggia, “Semiconductor-doped silica saturable absorber films for solid-state laser mode locking,” Opt. Lett. 23, 1766–1768 (1998).
  15. R. P. Prasankumar, C. Chudoba, J. G. Fujimoto, P. Mak, and M. F. Ruane, “Self-starting mode locking in a Cr:forsterite laser by use of non-epitaxially-grown semiconductor-doped silica films,” Opt. Lett. 27, 1564–66 (2002).
  16. K. Tsunetomo, H. Nasu, H. Kitayama, A. Kawabuchi, Y. Osaka, and K. Takiyama, “Quantum size effect of semiconductor microcrystallites doped in SiO2-glass thin films prepared by RF-sputtering,” Jpn. J. Appl. Phys. 28, 1928–1933 (1989).
  17. K. Tsunetomo, M. Yamamoto, and Y. Osaka, “Preparation and properties of InxGa1−xAs microcrystallites embedded in SiO2 glass films,” Jpn. J. Appl. Phys. 30, L521–L524 (1991).
  18. S. Kaneko, H. Nasu, T. Ikegami, J. Matsuoka, and K. Kamiya, “Effect of preparation conditions on the properties of CdSe microcrystal-doped SiO2 glass thin films prepared by RF-sputtering,” Jpn. J. Appl. Phys. 31, 2206–2211 (1992).
  19. I. Tanahashi, A. Tsujimura, T. Mitsuyu, and A. Nishino, “Optical properties of CdS microcrystallite-doped SiO2 glass thin films,” Jpn. J. Appl. Phys. 29, 2111–2115 (1990).
  20. I. P. Bilinsky, J. G. Fujimoto, J. N. Walpole, and L. J. Misaggia, “InAs-doped silica films for saturable absorber applications,” Appl. Phys. Lett. 74, 2411–2413 (1999).
  21. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 46, 46–56 (1999).
  22. U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24, 411–413 (1999).
  23. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9, 150–152 (1984).
  24. C. Chudoba, J. G. Fujimoto, E. P. Ippen, H. A. Haus, U. Morgner, F. X. Kärtner, V. Scheuer, G. Angelow, and T. Tschudi, “All-solid-state Cr:forsterite laser generating 14-fs pulses at 1.3 μm,” Opt. Lett. 26, 292–294 (2001).
  25. W. D. Callister, Materials Science and Engineering: An Introduction (Wiley, New York, 2003).
  26. L. H. Van Vlack, Elements of Materials Science (Addison-Wesley, Reading, Mass., 1964).
  27. I. P. Bilinsky, “Novel saturable absorber materials and devices for laser modelocking,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 1999).
  28. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  29. G. L. Huang and H. S. Kwok, “Femtosecond dephasing times in semiconductor microcrystals measured with incoherent light,” J. Opt. Soc. Am. B 9, 2019–2024 (1992).
  30. D. M. Mittleman, R. W. Schoenlein, J. J. Shiang, V. L. Colvin, A. P. Alivisatos, and C. V. Shank, “Quantum size dependence of femtosecond electronic dephasing and vibrational dynamics in CdSe nanocrystals,” Phys. Rev. B 49, 14, 435–14, 447 (1994).
  31. V. I. Klimov, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Electron and hole relaxation pathways in semiconductor quantum dots,” Phys. Rev. B 60, 13, 740–13, 749 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited