OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 5 — May. 1, 2004
  • pp: 1005–1012

Polarization dependence of light intensity distribution near a nanometric aluminum slit

Cheng Hung Wei, Pei Hsi Tsao, Wunshain Fann, Pei-Kuen Wei, Jonas O. Tegenfeldt, and Robert H. Austin  »View Author Affiliations

JOSA B, Vol. 21, Issue 5, pp. 1005-1012 (2004)

View Full Text Article

Acrobat PDF (553 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The near-field radiation pattern of a long thin slit (with a width much smaller than the excitation wavelength) in a uniform aluminum surface was measured and modeled by numerical computation. In particular, the interplay between the incident light polarization and the slit width is found to play an essential role in the near-field profile on the back side of the nanoslits. Two-dimensional finite-difference time-domain computer simulations were performed to calculate the near-field intensity profile for different slit widths and metal thicknesses. This method will allow the optimization of three-dimensional near-field radiation patterns for a variety of near-field molecular scanning schemes.

© 2004 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(050.1940) Diffraction and gratings : Diffraction
(240.6680) Optics at surfaces : Surface plasmons

Cheng Hung Wei, Pei Hsi Tsao, Wunshain Fann, Pei-Kuen Wei, Jonas O. Tegenfeldt, and Robert H. Austin, "Polarization dependence of light intensity distribution near a nanometric aluminum slit," J. Opt. Soc. Am. B 21, 1005-1012 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. P. Wolffe and M. A. Matzke, “Epigenetics: regulation through repression,” Science 286, 481–486 (1999).
  2. G. Riddihough and E. Pennisi, “The evolution of epigenetics,” Science 293, 1063 (2001).
  3. J. M. Berg, J. L. Tymoczko, and L. Stryer, Biochemistry, 5th ed. (Freeman, New York, 2002), pp. 867–879.
  4. M. Gu, Advanced Optical Imaging Theory (Springer, Berlin, 1999), pp. 143–176 and Chap. 6.
  5. A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvini, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science 300, 2061–2065 (2003).
  6. S. Kawata, M. Ohtsu, and M. Irie, Nano-optics (Springer, New York, 2001).
  7. J. O. Tegenfeldt, O. Bakajin, C.-F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, “Near-field scanner for moving molecules,” Phys. Rev. Lett. 86, 1378–1381 (2001).
  8. R. H. Austin, J. O. Tegenfeldt, H. Cao, S. Y. Chou, and E. C. Cox, “Scanning the controls: genomics and nanotechnology,” IEEE Trans. Nanotechnol. 1, 12–17 (2002).
  9. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
  10. M. A. Paesler and P. J. Moyer, Near-Field Optics (Wiley-Interscience, New York, 1996).
  11. Y. Leviatan, “Study of near-zone fields of a small aperture,” J. Appl. Phys. 60, 1577–1583 (1986).
  12. G. Hatakoshi and H. Furuyama, “Polarization dependence analysis of optical loss in small aperture metal waveguides for near field optics,” Jpn. J. Appl. Phys. 40, 1548–1551 (2001).
  13. H. Furukawa and S. Kawata, “Near-field optical microscope images of a dielectric flat substrate with subwavelength strips,” Opt. Commun. 196, 93–102 (2001).
  14. Th. Huser, L. Novotny, Th. Lacoste, R. Eckert, and H. Heinzelmann, “Observation and analysis of near-field optical diffraction,” J. Opt. Soc. Am. A 16, 141–148 (1999).
  15. P.-K. Wei, H.-L. Chou, and W. Fann, “Optical near-field in nano metallic slits,” Opt. Exp. 10, 1418–1424 (2002), http://www.opticsexpress.org.
  16. A. Yariv, Optical Electronics, 4th ed. (Saunders, Fort Worth, Tex., 1991), pp. 45–50.
  17. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston, Mass., 2000).
  18. W. Li, J. O. Tegenfeldt, L. Chen, R. H. Austin, S. Y. Chou, P. A. Kohl, J. Krotine, and J. C. Sturm, “Sacrificial polymers for nanofluidic channels in biological applications,” Nanotechnology 14, 578–583 (2003).
  19. E. Betzig, P. L. Finn, and J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
  20. P. K. Wei and W. S. Fann, “Tip-sample distance regulation for near-field scanning optical microscopy using the bending angle of the tapered fiber probe,” J. Appl. Phys. 84, 4655–4660 (1998).
  21. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  22. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1978), Chap. 8, pp. 334–350.
  23. D. M. Sullivan, “Frequency-dependent FDTD methods using Z transforms,” IEEE Trans. Antennas Propag. 40, 1223–1230 (1992).
  24. P. K. Wei, R. L. Chang, J. H. Hsu, S. H. Lin, W. S. Fann, and B. R. Hsieh, “Two-dimensional near-field intensity distribution of tapered fiber probes,” Opt. Lett. 21, 1876–1878 (1996).
  25. A. V. Zvyagin, J. D. White, and M. Ohtsu, “Near-field optical microscope image formation: a theoretical and experimental study,” Opt. Lett. 22, 955–957 (1997).
  26. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
  27. C. J. Bouwkamp, “On the diffraction of electromagnetic waves by small circular disks and holes,” Philips Res. Rep. 5, 401–422 (1950).
  28. D. Bhusari, H. A. Reed, M. Wedlake, A. M. Padovani, S. A. Bidstrup Allen, and P. A. Kohl, “Fabrication of air-channel structures for microfluidic, microelectromechanical, and microelectronic applications,” J. Microelectromech. Syst. 10, 400–408 (2001).
  29. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a sub-wavelength aperature,” Science 297, 820–822 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited