OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 5 — May. 1, 2004
  • pp: 1013–1022

Counterpropagating second-harmonic generation: a new technique for the investigation of molecular chirality at surfaces

Matthew A. Kriech and John C. Conboy  »View Author Affiliations


JOSA B, Vol. 21, Issue 5, pp. 1013-1022 (2004)
http://dx.doi.org/10.1364/JOSAB.21.001013


View Full Text Article

Acrobat PDF (791 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The theoretical and experimental investigation of a new chiral second-harmonic generation technique that utilizes a counterpropagating optical geometry was conducted. The counterpropagating optical geometry employed here can effectively separate the chiral and achiral contributions to the SH emission, which cannot be easily accomplished under a copropagating geometry. The technique was applied to an experimental investigation of the molecular adsorption of (R)-(+)-1, 1-bi-2-naphthol to a planar-supported lipid bilayer of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphotidylcholine. A strong chiral second-harmonic generation response was observed when a single enantiomer intercalated into the membrane, but showed no chiral response when equal concentrations of the enantiomers were present in the bilayer.

© 2004 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(240.0240) Optics at surfaces : Optics at surfaces
(240.4350) Optics at surfaces : Nonlinear optics at surfaces
(300.6420) Spectroscopy : Spectroscopy, nonlinear
(310.6860) Thin films : Thin films, optical properties

Citation
Matthew A. Kriech and John C. Conboy, "Counterpropagating second-harmonic generation: a new technique for the investigation of molecular chirality at surfaces," J. Opt. Soc. Am. B 21, 1013-1022 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-5-1013


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. D. Fasman, ed., Circular Dichroism and the Conformational Analysis of Biomolecules (Plenum, New York, 1996), p. 738.
  2. H. I. Yee, J. D. Byers, and J. M. Hicks, “,” Proc. SPIE 2125, 119–131 (1994).
  3. T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study,” J. Phys. Chem. 97, 1383–1388 (1993).
  4. J. M. Hicks and T. Petralli-Mallow, “Nonlinear optics of chiral surface systems,” Appl. Phys. B 68, 589–593 (1999).
  5. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  6. J. C. Conboy, J. L. Daschbach, and G. L. Richmond, “Total internal reflection second-harmonic generation: probing the alkane water interface,” Appl. Phys. A 59, 623–629 (1994).
  7. P. Guyot-Sionnest and A. Tadjeddine, “Study of silver(111) and gold(111) electrodes by optical second-harmonic generation,” J. Chem. Phys. 92, 734–738 (1990).
  8. G. L. Richmond, “Second harmonic generation studies of anionic adsorption on polycrystalline and single crystal silver surfaces,” Chem. Phys. Lett. 110, 571–575 (1984).
  9. K. B. Eisenthal, “Equilibrium and dynamic processes at interfaces by second harmonic and sum frequency generation,” Annu. Rev. Phys. Chem. 43, 627–661 (1992).
  10. R. M. Corn, M. Romagnoli, M. D. Levenson, and M. R. Philpott, “The potential dependence of surface plasmon-enhanced second-harmonic generation at thin film silver electrodes,” Chem. Phys. Lett. 106, 30–35 (1984).
  11. D. A. Higgins and R. M. Corn, “Second harmonic generation studies of adsorption at a liquid-liquid electrochemical interface,” J. Phys. Chem. 97, 489–493 (1993).
  12. S. G. Grubb, M. W. Kim, T. Rasing, and Y. R. Shen, “Orientation of molecular monolayers at the liquid-liquid interface as studied by optical second harmonic generation,” Langmuir 4, 452–454 (1988).
  13. J. A. Giordmaine and P. M. Rentzepis, “Correlation of optical activity and nonlinear polarizability,” J. Chem. Phys. 64, 215–221 (1967).
  14. H. J. Simon and N. Bloembergen, “Second-harmonic light generation in crystals with natural optical activity,” Phys. Rev. 171, 1104–1114 (1968).
  15. T. Verbiest, M. Kauranen, S. Van Elshocht, and A. Persoons, “Optical susceptibilities of chiral systems and chiral thin films,” Nonlinear Opt. 22, 155–160 (1999).
  16. A. Persoons, M. Kauranen, S. Van Elshocht, T. Verbiest, L. Ma, L. Pu, B. M. W. Langeveld-Voss, and E. W. Meijer, “Chiral effects in second-order nonlinear optics,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 315, 395–400 (1998).
  17. M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, “Chirality effects in second-order nonlinear optics,” NATO ASI Ser., Ser. E 9, 129–144 (1996).
  18. J. M. Hicks, T. Petralli-Mallow, and J. D. Byers, “Consequences of chirality in second-order non-linear spectroscopy at surfaces,” Faraday Discuss. 99, 341–357 (1994).
  19. J. D. Byers and J. M. Hicks, “Electronic spectral effects on chiral surface second harmonic generation,” Chem. Phys. Lett. 231, 216–224 (1994).
  20. J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonicgeneration analog of optical rotatory dispersion for the study of chiral monolayers,” J. Chem. Phys. 101, 6233–6241 (1994).
  21. J. D. Byers, H. I. Yee, T. Petralli-Mallow, and J. M. Hicks, “Second-harmonic generation circular-dichroism spectroscopy from chiral monolayers,” Phys. Rev. B 49, 14643–14647 (1994).
  22. G. J. Simpson, “Structural origins of circular dichroism in surface second harmonic generation,” J. Chem. Phys. 117, 3398–3410 (2002).
  23. M. Florsheimer, M. Bosch, C. Brillert, M. Wierschem, and H. Fuchs, “Interface imaging by second-harmonic microscopy,” J. Vac. Sci. Technol. B 15, 1564–1568 (1997).
  24. B. Dick, A. Gierulski, G. Marowsky, and G. A. Reider, “Determination of the nonlinear optical susceptibility χ(2) of surface layers by sum and difference frequency generation in reflection and transmission,” Appl. Phys. B 38, 107–116 (1985).
  25. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
  26. P. Guyot-Sionnest, Y. R. Shen, and T. F. Heinz, “Comments on ‘Determination of the nonlinear optical susceptibility χ(2) of surface layers’ by B. Dick et al.,” Appl. Phys. B, 237–238 (1987).
  27. J. C. Conboy, J. L. Daschbach, and G. L. Richmond, “Studies of alkane/water interfaces by total internal reflection second harmonic generation,” J. Phys. Chem. 98, 9688–9692 (1994).
  28. H. M. McConnell, T. H. Watts, and R. M. Weis, “Supported planar membranes in studies of cell-cell recognition in the immune system,” Biochim. Biophys. Acta 864, 95–106 (1986).
  29. M. A. Kriech and J. C. Conboy, “Measuring melittin binding to planar supported lipid bilayers by second harmonic generation,” Anal. Chim. Acta. 75, 6621–6628 (2003).
  30. M. A. Kriech and J. C. Conboy, “Label-free chiral detection of melittin binding to a membrane,” J. Am. Chem. Soc. 125, 1148–1149 (2003).
  31. M. Florsheimer, “Second-harmonic microscopy. A new tool for the remote sensing of interfaces,” Phys. Status Solidi A 173, 15–27 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited