OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 5 — May. 1, 2004
  • pp: 1032–1043

Negative refraction in indefinite media

David R. Smith, Pavel Kolinko, and David Schurig  »View Author Affiliations


JOSA B, Vol. 21, Issue 5, pp. 1032-1043 (2004)
http://dx.doi.org/10.1364/JOSAB.21.001032


View Full Text Article

Acrobat PDF (1059 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Initial experiments on wedge samples composed of isotropic metamaterials with simultaneously negative permittivity and permeability have indicated that electromagnetic radiation can be negatively refracted. In more recently reported experiments [Phys. Rev. Lett. 90, 1074011 (2003)], indefinite metamaterial samples, for which the permittivity and permeability tensors are negative along only certain of the principal axes of the metamaterial, have also been used to demonstrate negative refraction. We present here a detailed analysis of the refraction and reflection behavior of electromagnetic waves at an interface between an indefinite medium and vacuum. We conclude that certain classes of indefinite media have identical refractive properties as isotropic negative index materials. However, there are limits to this correspondence, and other complicating phenomena may occur when indefinite media are substituted for isotropic negative index materials. We illustrate the results of our analysis with finite-element-based numerical simulations on planar slabs and wedges of negative index and indefinite media.

© 2004 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(160.1190) Materials : Anisotropic optical materials
(260.1180) Physical optics : Crystal optics
(260.2110) Physical optics : Electromagnetic optics

Citation
David R. Smith, Pavel Kolinko, and David Schurig, "Negative refraction in indefinite media," J. Opt. Soc. Am. B 21, 1032-1043 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-5-1032


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
  2. D. R. Smith and N. Kroll, “Negative refractive index in left-handed materials,” Phys. Rev. Lett. 85, 4184–4187 (2000).
  3. R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E 64, 05662501–05662515 (2001).
  4. See the special issue on negative refraction in Opt. Express 11, (2003), http://www.opticsexpress.org.
  5. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 79–81 (2001).
  6. P. M. Valanju, R. M. Walser, and A. P. Valanju, “Wave refraction in negative-index media: always positive and very inhomogeneous,” Phys. Rev. Lett. 88, 1874011–1874014 (2002).
  7. N. Garcia and M. Nieto-Vesperinas, “Is there an experimental verification of a negative index of refraction yet?” Opt. Lett. 27, 885–887 (2002).
  8. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90, 1074011–1074014 (2003).
  9. A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90, 1374011–1374014 (2003).
  10. J. Pacheco, Jr., T. M. Grzegorczyk, B.-I. Wu, Y. Zhang, and J. A. Kong, “Power propagation in homogeneous isotropic frequency-dispersive left-handed media,” Phys. Rev. Lett. 89, 2574011–2574014 (2002).
  11. S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, “Refraction in media with a negative refractive index,” Phys. Rev. Lett. 90, 1074021–1074024 (2003).
  12. D. R. Smith, D. Schurig, and J. B. Pendry, “Negative refraction of modulated electromagnetic waves,” Appl. Phys. Lett. 81, 2713–2715 (2002).
  13. R. A. Silin, “Derivation of refraction and reflection laws by the isofrequency method,” Radiotekh. Elektron. (Moscow) 47, 186–191 (2002) [Translated version: R. A. Silin, J. Commun. Technol. Electron. 47, 169–174 (2002)].
  14. I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, “BW media—media with negative parameters, capable of supporting backward waves,” Microwave Opt. Technol. Lett. 31, 129–133 (2001).
  15. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 0774051–0774054 (2003).
  16. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 2011041–2011044 (2002).
  17. R. K. Fisher and R. W. Gould, “Resonance cones in the field pattern of a short antenna in an anisotropic plasma,” Phys. Rev. Lett. 22, 1093–1095 (1969).
  18. K. G. Balmain, A. A. E. Luttgen, and P. C. Kremer, “Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial,” IEEE Antennas Wireless Propag. Lett. 1, 146–149 (2002).
  19. L. Hu and S. T. Chui, “Characteristics of electromagnetic wave propagation in uniaxially anisotropic left-handed materials,” Phys. Rev. B 66, 0851081–0851087 (2002).
  20. J. R. Reitz, F. J. Milford, and R. W. Christy, Foundations of Electromagnetic Theory, 3rd ed. (Addison-Wesley, Reading, Mass., 1980), pp. 391–394.
  21. A. Lakhtakia, “On perfect lenses and nihility,” Int. J. Infrared Millim. Waves 23, 339–343 (2002).
  22. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
  23. P. Kolinko and D. R. Smith, “Numerical study of electromagnetic waves interacting with negative index materials,” Opt. Express 11, 640–648 (2003), http://www.opticsexpress.org.
  24. C. P. Parazzoli and K. Li, Phantom Works, The Boeing Company (personal communication, 2003).
  25. W. C. Chew, Waves and Fields in Inhomogeneous Media (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995), p. 58.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited