OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 5 — May. 1, 2004
  • pp: 1050–1064

Improved wave-number tables of the carbonyl sulfide ν2 and 2ν2 bands and guides for accurate measurement

Veli-Matti Horneman  »View Author Affiliations

JOSA B, Vol. 21, Issue 5, pp. 1050-1064 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (392 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By use of the ν2 and 2ν2 bands of carbonyl sulfide (OCS), the high accuracy of the CO2 laser lines is transferred from 10 µm to the far-infrared region near 20 µm. Measurements were performed with a slightly modified Bruker IFS 120 HR spectrometer at the infrared laboratory of the University of Oulu. The effect of the pressure shift was reduced by measurement of the 2ν2 band with the CO2 laser band in a long-path cell with low sample pressures. With highly sensitive measurement, the absolute accuracy of the 2ν2 band center was reduced to 1.4×10-6 cm-1. Together with the accurate result for the 2ν2 band, measurement of the ν2 band with a resolution of 0.001 cm-1 and a signal-to-noise ratio of ∼150, accurate wave numbers in the region of the lower band can also be obtained. To the best of the author’s knowledge, the absolute accuracy of 3.9×10-6 cm-1 for the ν2 band center is the best ever reached in the region near 500 cm-1. New accurate wave number tables are presented for the bands 02000000 near 1047 cm-1 and 02000110 and 01100000 in the region from 495 to 555 cm-1. The most important factors that limit the performance of Fourier spectrometers in high-absolute-accuracy measurements are discussed. With systematic alignment methods these barriers have been overcome with the spectrometer used. An easy method to confirm the quality of a measured spectrum is presented.

© 2004 Optical Society of America

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6340) Spectroscopy : Spectroscopy, infrared

Veli-Matti Horneman, "Improved wave-number tables of the carbonyl sulfide ν2 and 2ν2 bands and guides for accurate measurement," J. Opt. Soc. Am. B 21, 1050-1064 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Jolma, V.-M. Horneman, J. Kauppinen, and A. G. Maki, “Absolute OCS wavenumbers and analysis of bands in the region of the lowest fundamental ν2,” J. Mol. Spectrosc. 113, 167–174 (1985). [CrossRef]
  2. J. P. Sattler, T. L. Worchersky, A. G. Maki, and W. J. Lafferty, “Heterodyne frequency measurements of carbonyl sulfide near 1050 cm−1,” J. Mol. Spectrosc. 90, 460–466 (1981). [CrossRef]
  3. J. S. Wells, F. R. Petersen, and A. G. Maki, “Heterodyne frequency measurements with a tunable diode laser-CO2 laser spectrometer: spectroscopic reference frequencies in the 9.5-μm band of carbonyl sulfide,” Appl. Opt. 18, 3567–3573 (1979). [CrossRef] [PubMed]
  4. V.-M. Horneman, M. Koivusaari, A.-M. Tolonen, S. Alanko, R. Anttila, R. Paso, and T. Ahonen, “Updating OCS 2ν2 band for calibration purposes,” J. Mol. Spectrosc. 155, 298–306 (1992). [CrossRef]
  5. J. Kauppinen, T. Kärkkäinen, and E. Kyrö, “Correcting errors in the optical path difference in Fourier spectroscopy,” Appl. Opt. 17, 1587–1594 (1978). [CrossRef] [PubMed]
  6. J. Kauppinen and P. Saarinen, “Line-shape distortions inmisaligned cube corner interferometers,” Appl. Opt. 31, 69–74 (1992). [CrossRef] [PubMed]
  7. P. Raspollini, P. Ade, B. Carli, and M. Ridolfi, “Correction of instrument line-shape distortions in Fourier transform spectroscopy,” Appl. Opt. 37, 3697–3704 (1998). [CrossRef]
  8. M. Ahro, J. Kauppinen, and I. Salomaa, “Detection and correction of instrumental line-shape distortions in a Fourier spectroscopy,” Appl. Opt. 39, 6230–6237 (2002). [CrossRef]
  9. A. G. Maki and J. S. Wells, “Wavenumber calibration tables from heterodyne frequency measurements,” Version 1.3 (National Institute of Standards and Technology, Gaithersburg, Md, 2 November, 2002). Available on line: http://physics.nist.gov/wavenum.
  10. G. Guelachvili, M. Birk, Ch. J. Bordé, J. W. Brault, L. R. Brown, B. Carli, A. R. H. Cole, K. M. Evenson, A. Fayt, D. Hausamann, J. W. C. Johns, J. Kauppinen, Q. Kou, A. G. Maki, K. Narahari Rao, R. A. Toth, W. Urban, A. Valentin, J. Vergès, G. Wagner, M. H. Wappelhorst, J. S. Wells, B. P. Winnewisser, and M. Winnewisser, “High resolution wavenumber standards for the infrared,” J. Mol. Spectrosc. 177, 164–179 (1996). [CrossRef]
  11. V. Malathy Devi, D. Chris Berner, M. A. H. Smith, L. R. Brown, and M. Dulick, “Multispectrum analysis of pressure broadening and pressure shift coefficients in the 12C16O2 and 13C16O2 laser bands,” J. Quant. Spectrosc. Radiat. Transf. 73, 411–434 (2003). [CrossRef]
  12. V.-M. Horneman, “Instrumental and calculation methods for Fourier transform infrared spectroscopy and accurate standard spectra,” Acta Univ. Oulu A 239, 57–70 (1992).
  13. P. Saarinen and J. Kauppinen, “Spectral line-shape distortions in Michelson interferometers due to off-focus radiation source,” Appl. Opt. 31, 2353–2359 (1992). [CrossRef] [PubMed]
  14. J. Kauppinen and V.-M. Horneman, “Cube corner interferometer with a resolution of 0.001 cm−1,” Appl. Opt. 30, 2575–2578 (1991). [CrossRef] [PubMed]
  15. A. G. Maki, C.-C. Chou, K. M. Evenson, L. R. Zink, and J.-T. Shy, “Improved molecular constants and frequencies for the CO2 laser from new high-J regular and hot-band frequency measurements,” J. Mol. Spectrosc. 167, 211–224 (1994). [CrossRef]
  16. T. Ahonen, S. Alanko, V.-M. Horneman, M. Koivusaari, R. Paso, A.-M. Tolonen, and R. Anttila, “A long path cell for the Fourier spectrometer Bruker IFS 120HR. Application to the weak ν12 and 3ν2 bands of carbon disulfide,” J. Mol. Spectrosc. 181, 279–286 (1997). [CrossRef]
  17. T. Ahonen, P. Karhu, and V.-M. Horneman, “An optimized White-type gas cell for the Bruker IFS 120 high resolution FTIR spectrometer,” presented at the Fifteenth Colloquium on High Resolution Molecular Spectroscopy, Glasgow, Scotland, 8–13 September, 1997.
  18. A. Fayt, R. Vandenhaute, and J. G. Lahaye, “Global rovibrational analysis of carbonyl sulfide,” J. Mol. Spectrosc. 119, 233–266 (1986). [CrossRef]
  19. E. Schäfer and M. Winnewisser, “A broadband submillimeter wave spectrometer system with on-line microcomputer data analysis,” Ber. Bunsenges. Phys. Chem. 87, 237–334 (1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited