OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 5 — May. 1, 2004
  • pp: 1073–1080

Optical measurement of size and complex index of laser-damage precursors: the inverse problem

Laurent Gallais, Philippe Voarino, and Claude Amra  »View Author Affiliations


JOSA B, Vol. 21, Issue 5, pp. 1073-1080 (2004)
http://dx.doi.org/10.1364/JOSAB.21.001073


View Full Text Article

Enhanced HTML    Acrobat PDF (606 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An indirect optical method for determining size and complex refractive index of laser-damage precursors in optical materials is presented. The method is described in detail, with special attention to all assumptions. Results are given for a series of thin-film SiO2 layers.

© 2004 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(160.6030) Materials : Silica
(310.0310) Thin films : Thin films

Citation
Laurent Gallais, Philippe Voarino, and Claude Amra, "Optical measurement of size and complex index of laser-damage precursors: the inverse problem," J. Opt. Soc. Am. B 21, 1073-1080 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-5-1073


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Hopper and D. R. Uhlmann, “Mechanism of inclusion damage in laser glass,” J. Appl. Phys. 41, 4023–4037 (1970). [CrossRef]
  2. N. Bloembergen, “Roles of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt. 12, 661–664 (1973). [CrossRef] [PubMed]
  3. M. R. Lange, J. K. McIver, and A. H. Guenther, “Pulsed laser damage in thin film coatings: fluorides and oxides,” Thin Solid Films 125, 143–155 (1985). [CrossRef]
  4. M. R. Kozlowski and R. Chow, “The role of defects in laser multilayer coatings,” in Laser-Induced Damage in Optical Materials: 1993, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 2114, 640–649 (1994). [CrossRef]
  5. J. Dijon, T. Poiroux, and C. Desrumaux, “Nanoabsorbing centers: a key point in laser damage of thin films,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 2966, 315–325 (1997). [CrossRef]
  6. H. Bercegol, “Statistical distribution of laser damage and spatial scaling law for a model with multiple defects cooperation in damage,” in Laser-Induced damage in Optical Materials: 1999, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, eds., Proc. SPIE 3902, 339–346 (2000). [CrossRef]
  7. F. Y. Genin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A 18, 2607–2616 (2001). [CrossRef]
  8. S. Papernov and A. W. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser radiation,” J. Appl. Phys. 92, 5720–5728 (2002). [CrossRef]
  9. J. Y. Natoli, L. Gallais, H. Akhouayri, and C. Amra, “Laser-induced damage of materials in bulk, thin film, and liquid forms,” Appl. Opt. 41, 3156–3166 (2002). [CrossRef] [PubMed]
  10. F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignre, M. Loiseau, and J. T. Donohue, “Study of UV laser interaction with gold nanoparticles embedded in silica,” Appl. Phys. B 75, 803–815 (2002). [CrossRef]
  11. P. A. Temple, W. H. Lowdermilk, and D. Milam, “Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm,” Appl. Opt. 21, 3249–3255 (1982). [CrossRef] [PubMed]
  12. S. D. Allen, J. O. Porteus, and W. N. Faith, “Infrared laser-induced desorption of H2O and hydrocarbons from optical surfaces,” Appl. Phys. Lett. 41, 215–218 (1982). [CrossRef]
  13. J. E. Swain, S. Stokowski, D. Milam, and G. Kennedy, “The effect of baking and pulsed laser irradiation on the damage threshold of potassium dihydrogen phosphate glass,” Appl. Phys. Lett. 41, 12–16 (1982). [CrossRef]
  14. M. E. Frink and J. W. Arenberg, “Temporary laser damage threshold enhancement by laser conditioning of antireflection-coated glass,” Appl. Phys. Lett. 51, 415–418 (1987). [CrossRef]
  15. M. R. Kozlowski, C. R. Wolfe, M. C. Staggs, and J. H. Campbell, “Large area laser conditioning of dielectric thin film mirrors,” in Laser-Induced Damage in Optical Materials: 1989, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 1438, 376–390 (1990).
  16. M. C. Staggs, M. Balooch, M. R. Kozlowski, and W. J. Siekhaus, “In situ atomic force microscopy of laser-conditioned and laser-damaged HfO2/SiO2 dielectric mirror coatings,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 1624, 1–12 (1992).
  17. C. R. Wolfe, M. R. Kozlowski, J. H. Campbell, M. Staggs, and F. Rainer, “Permanent laser conditioning of thin film optical materials,” U.S. patent 5, 472, 748 (December 5, 1995).
  18. E. Eva, K. Mann, N. Kaiser, B. Anton, R. Henking, D. Ristau, P. Weissbrodt, D. Mademann, L. Raupach, and E. Hacker, “Laser conditionning of LaF3/MgF2 dielectric coatings at 248 nm,” Appl. Opt. 35, 5613–5619 (1996). [CrossRef] [PubMed]
  19. M. Runkel, J. DeYoreo, W. Sell, and D. Milam, “Laser conditioning of KDP on the optical sciences laser using large area beam,” in Laser-Induced Damage in Optical Materials: 1997, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 3244, 51–63 (2001). [CrossRef]
  20. M. Staggs, M. Yan, and M. Runkel, “Laser raster conditioning of KDP and DKDP crystals using XeCl and Nd:YAG lasers,” in Laser-Induced Damage in Optical Materials: 2000, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, eds., Proc. SPIE 4347, 400–407 (2001). [CrossRef]
  21. L. Lamaignère, M. Loiseau, H. Piombini, D. Plessis, and H. Bercegol, “Bulk damage and laser conditioning of KDP and DKDP crystals with Xe-F excimer light and the 3ω of a Nd:YAG laser,” in Laser-Induced Damage in Optical Materials: 2002, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, C. J. Stolz, A. Giesen, and H. Weber, eds., Proc. SPIE 4932, 391–392 (2004).
  22. J. A. Menapace, B. Penetrante, D. Golini, A. Slomba, P. E. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused silica optics,” in Laser-Induced Damage in Optical Materials: 2001, G. J. Exarhos, A. H. Guenther, K. L. Lewis, M. J. Soileau, and C. J. Stolz, eds., Proc. SPIE 4679, 56–68 (2002). [CrossRef]
  23. J. E. Peterson, S. M. Maricle, R. M. Brusasco, and B. M. Penetrante, “Reduction of damage initiation density in fused silica optics via UV laser conditioning,” U.S. patent 2002/0046579 (2002).
  24. P. F. Gu and J. F. Tang, “Laser-induced damage resistance of thin-films polarizers prepared by ion-assisted deposition,” Opt. Lett. 19, 81–83 (1994). [CrossRef]
  25. J. Dijon, B. Rafin, C. Pellé, J. Hue, G. Ravel, and B. Andr, “100-J/cm2 1.06 μm mirrors,” in Laser-Induced Damage in Optical Materials: 1999, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, eds., Proc. SPIE 3902, 158–168 (2000). [CrossRef]
  26. M. Alvisi, M. Di Giulio, S. G. Maronne, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258 (2000). [CrossRef]
  27. R. Picard, D. Milam, and R. Bradbury, “Statistical analysis of defect-caused damage in thin films,” Appl. Opt. 16, 1563–1571 (1977). [CrossRef] [PubMed]
  28. J. O. Porteus and S. C. Seitel, “Absolute onset of optical surface damage using distributed defect ensembles,” Appl. Opt. 23, 3796–3805 (1984). [CrossRef] [PubMed]
  29. R. M. O’Connell, “Onset threshold analysis of defect-driven surface and bulk laser damage,” Appl. Opt. 31, 4143–4153 (1992). [CrossRef] [PubMed]
  30. L. Gallais, J. Y. Natoli, and C. Amra, “Statistical study of single and multiple pulse laser-induced damage in glasses,” Opt. Express 10, 1465–1474 (2002), http://www.opticsexpress.org. [CrossRef] [PubMed]
  31. L. Gallais, “Laser damage in optical components—metrology, statistical and photo-induced analysis of precursor centers,” Ph.D. dissertation (Université d’ Aix-Marseille III, France, 2002).
  32. M. Commandré and P. Roche, “Characterization of optical coatings by photothermal deflection,” Appl. Opt. 34, 5021–5034 (1996). [CrossRef]
  33. A. During, “Photothermal microscopy and laser damage,” Ph.D. dissertation (Université d’ Aix-Marseille III, France, 2002).
  34. A. During, C. Fossati, and M. Commandré, “Multiwavelength imaging of defects in ultraviolet optical materials,” Appl. Opt. 41, 3118–3126 (2002). [CrossRef] [PubMed]
  35. C. Deumié, H. Giovannini, and C. Amra, “Angle-resolved ellipsometry of light scattering: discrimination of surface and bulk effects in substrates and optical coatings,” Appl. Opt. 41, 3362–3369 (2002). [CrossRef] [PubMed]
  36. P. A. Temple, “Total internal reflection microscopy: a surface inspection technique,” Appl. Opt. 20, 2656–2664 (1981). [CrossRef] [PubMed]
  37. L. Sheehan, M. R. Kozlowski, and D. Camp, “Application of total internal reflection microscopy for laser damage studies on fused silica,” in Laser-Induced Damage in Optical Materials: 1997, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 2714, 282–295 (1998). [CrossRef]
  38. L. Gallais and J. Y. Natoli, “Optimized metrology for laser damage measurement—application to multiparameter study,” Appl. Opt. 42, 960–971 (2003). [CrossRef] [PubMed]
  39. International Organization for Standardization, “Determination of laser-damage threshold of optical surfaces. 1. 1-on-1 test,” standard ISO 11254–1 (International Organization for Standardization, Geneva, 2000).
  40. International Organization for Standardization, “Determination of laser-damage threshold of optical surfaces. 2. S-on-1 test,” standard ISO 11254–2 (International Organization for Standardization, Geneva, 2001).
  41. J. Hue, P. Garrec, J. Dijon, and P. Lyan, “R-on-1 automatic mapping: a new tool for laser damage testing,” in Laser-Induced Damage in Optical Materials: 1995, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 2714, 90–101 (1996). [CrossRef]
  42. A. Gatto and M. Commandré, “Multiscale mapping technique for the simultaneous estimation of absorption and partial scattering in optical coatings,” Appl. Opt. 41, 225–234 (2002). [CrossRef] [PubMed]
  43. M. Ranier, P. Volto, G. Albrand, J. Y. Natoli, C. Amra, B. Pinot, and B. Geenen, “Waveguide losses by photothermal techniques in multilayers for laser damage investigation,” in Laser-Induced Damage in Optical Materials: 1997, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 3244, 484–490 (1998). [CrossRef]
  44. L. Escoubas, A. Gatto, G. Albrand, P. Roche, and M. Commandré, “Solarization of glass substrates during thin-film deposition,” Appl. Opt. 37, 1883–1889 (1998). [CrossRef]
  45. P. Temple and M. J. Soileau, “Resonant defect enhancement of the laser electric field,” in Damage in laser materials: 1976, A. J. Glass and H. E. Bennett, eds., Nat. Bur. Stand. (U.S.) Spec. Publ. 462, 371–378 (1976).
  46. M. R. Kozlowski, J. F. DeFord, and M. C. Staggs, “Laser-damage susceptibility of nodular defects in dielectric mirror coatings: AFM measurements and electric-field modeling,” AIP Conf. Proc. 288, 44–49 (1993). [CrossRef]
  47. K. F. Ferris, G. J. Exarhos, and S. M. Riser, “Enhancement factors for local electric fields in inhomogeneous media,” in Laser-Induced Damage in Optical Materials: 1994, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 2428, 435–443 (1995). [CrossRef]
  48. F. Bonneau, P. Combis, J. Vierne, and G. Daval, “Simulations of laser damage of SiO2 induced by a spherical inclusion,” in Laser-Induced Damage in Optical Materials: 2000, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, eds., Proc. SPIE 4347, 308–315 (2001). [CrossRef]
  49. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  50. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  51. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505–1509 (1980). [CrossRef] [PubMed]
  52. F. P. Incropera and D. P. DeWitt, Introduction to Heat Transfer (Wiley, New York, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited