OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 5 — May. 1, 2004
  • pp: 1081–1088

Effects of a gas medium on ultrafast laser beam delivery and materials processing

Ju Sun and Jon P. Longtin  »View Author Affiliations

JOSA B, Vol. 21, Issue 5, pp. 1081-1088 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (734 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The propagation of a focused femtosecond laser pulse under the coupled effects of self-focusing and plasma defocusing in a gas beam-delivery medium is investigated. The results show that a focused beam profile can be dramatically distorted in air but that this distortion can be minimized by use of an inert gas, particularly helium, to deliver the beam. Model predictions are in good agreement with previous experimental results for femtosecond laser micromachining of a copper sample in four gas environments: air, nitrogen, neon, and helium at ambient pressure. The best machining quality was obtained in helium; the worst, in air.

© 2004 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(260.5950) Physical optics : Self-focusing
(350.5400) Other areas of optics : Plasmas

Ju Sun and Jon P. Longtin, "Effects of a gas medium on ultrafast laser beam delivery and materials processing," J. Opt. Soc. Am. B 21, 1081-1088 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997). [CrossRef]
  2. J. Sun, J. P. Longtin, and P. M. Norris, “Ultrafast laser micromachining of silica aerogels,” J. Non-Cryst. Solids 281, 39–47 (2001). [CrossRef]
  3. G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Ablation of carbide materials with femtosecond pulses,” Appl. Surf. Sci. 205, 80–85 (2003). [CrossRef]
  4. P. Stanley, K. Venkatakrishnan, L. E. N. Lim, and B. K. A. Ngoi, “Influence of femtosecond laser parameters on fabrication of photomask by direct ablation,” Lasers Eng. 13, 13–23 (2003).
  5. E. T. J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and A. Mysyrowicz, “Conical emission from self-guided femtosecond pulses in air,” Opt. Lett. 21, 62–64 (1996). [CrossRef] [PubMed]
  6. A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, “Moving focus in the propagation of ultrashort laser pulses in air,” Opt. Lett. 22, 304–306 (1997). [CrossRef] [PubMed]
  7. M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett. 23, 382–384 (1998). [CrossRef]
  8. S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, N. Spinelli, and R. Velotta, “Double-peak distribution of electron and ion emission profile during femtosecond laser ablation of metals,” Appl. Surf. Sci. 186, 358–363 (2002). [CrossRef]
  9. H. K. Tonshoff, C. Momma, A. Ostendorf, S. Nolte, and G. Kamlage, “Microdrilling of metals with ultrashort laser pulses,” J. Laser Appl. 12, 23–27 (2000). [CrossRef]
  10. S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14, 2716–2722 (1997). [CrossRef]
  11. J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197, 891–895 (2002). [CrossRef]
  12. P. P. Pronko, P. A. Vanrompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998). [CrossRef]
  13. C. H. Fan and J. P. Longtin, “Modeling optical breakdown in dielectrics during ultrafast laser processing,” Appl. Opt. 40, 3124–3131 (2001). [CrossRef]
  14. C. H. Fan, J. Sun, and J. P. Longtin, “Breakdown threshold and localized electron density in water induced by ultrashort laser pulses,” J. Appl. Phys. 91, 2530–2536 (2002). [CrossRef]
  15. P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21, 155–248 (1997). [CrossRef]
  16. D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32, 670–678 (1996). [CrossRef]
  17. J. Sun and J. P. Longtin, “Inert gas beam delivery for ultrafast laser micromachining at ambient pressure,” J. Appl. Phys. 89, 8219–8224 (2001). [CrossRef]
  18. L. Walker, R. Maynard, and W. Clark, “Atmospheric affects on ultrashort-pulsed material processing,” in ICALEO 2002 (Laser Institute of America, Orlando, Fla., 2002), p. M702.
  19. A. E. Siegman, Lasers (University Science, Sausalito, Calif., 1986).
  20. S. L. Chin, A. Brodeur, S. Petit, O. G. Kosareva, and V. P. Kandidov, “Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser),” J. Nonlinear Opt. Phys. Mater. 8, 121–146 (1999). [CrossRef]
  21. P. Sprangle, E. Esarey, and J. Krall, “Self-guiding and stability of intense optical beams in gases undergoing ionization,” Phys. Rev. E 54, 4211–4232 (1996). [CrossRef]
  22. S. C. Rae, “Spectral blueshifting and spatial defocusing of intense laser pulses in dense gases,” Opt. Commun. 104, 330–335 (1994). [CrossRef]
  23. A. Chiron, B. Lamouroux, R. Lange, J. F. Ripoche, M. Franco, B. Prade, G. Bonnaud, G. Riazuelo, and A. Mysyrowicz, “Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases,” Eur. Phys. J. D 6, 383–396 (1999). [CrossRef]
  24. T.-C. Poon and P. P. Banerjee, Contemporary Optical Image Processing with MATLAB (Elsevier, New York, 2001).
  25. A. C. Newell and J. V. Moloney, Nonlinear Optics (Addison-Wesley, Redwood City, Calif., 1992).
  26. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).
  27. T. R. Taha and M. J. Ablowitz, “Analytical and numerical aspects of certain nonlinear evolution equations. 2. Numerical, nonlinear Schrödinger Equation,” J. Comput. Phys. 55, 203–230 (1984). [CrossRef]
  28. S. L. Chin, N. Akozbek, A. Proulx, S. Petit, and C. M. Bowden, “Transverse ring formation of a focused femtosecond laser pulse propagating in air,” Opt. Commun. 188, 181–186 (2001). [CrossRef]
  29. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).
  30. S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46, 1084–1090 (1992). [CrossRef] [PubMed]
  31. S. F. J. Larochelle, A. Talebpour, and S. L. Chin, “Coulomb effect in multiphoton ionization of rare-gas atoms,” J. Phys. B 31, 1215–1224 (1998). [CrossRef]
  32. A. M. Perelomov, V. S. Popov, and M. V. Terentev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924–934 (1966).
  33. M. Mlejnek, E. M. Wright, and J. V. Moloney, “Femtosecond pulse propagation in argon: a pressure dependence study,” Phys. Rev. E 58, 4903–4910 (1998). [CrossRef]
  34. D. Subbarao, P. Singh, R. Uma, and S. Bhaskar, “Computer simulation of laser-beam self-focusing in a plasma,” J. Plasma Phys. 61, 449–467 (1999). [CrossRef]
  35. D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 75 ed. (CRC, Boca Raton, Fla., 1994).
  36. E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, and A. Mysyrowicz, “Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses,” J. Opt. Soc. Am. B 14, 650–660 (1997). [CrossRef]
  37. X. L. Mao, W. T. Chan, M. A. Shannon, and R. E. Russo, “Plasma shielding during picosecond laser sampling of solid materials by ablation in He versus Ar atmosphere,” J. Appl. Phys. 74, 4915–4922 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited