OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 5 — May. 1, 2004
  • pp: 871–892

Broadband sensitizers for erbium-doped planar optical amplifiers: review

Albert Polman and Frank C. J. M. van Veggel  »View Author Affiliations


JOSA B, Vol. 21, Issue 5, pp. 871-892 (2004)
http://dx.doi.org/10.1364/JOSAB.21.000871


View Full Text Article

Acrobat PDF (1125 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Three different broadband sensitization concepts for optically active erbium ions are reviewed: 1) silicon nanocrystals, with absorption over the full visible spectrum, efficiently couple their excitonic energy to Er3+, 2) silver-related defect states in sodalime silicate glass have absorption in the blue and transfer energy to Er3+, and 3) organic cage complexes coordinated with well-chosen chromophores serve as broadband sensitizers in the visible. Energy transfer rates, efficiencies, and limiting factors are addressed for each of these sensitizers. Implications of the use of strong sensitizers for planar waveguide design are illustrated by using a model for the sensitizing effect of ytterbium.

© 2004 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications

Citation
Albert Polman and Frank C. J. M. van Veggel, "Broadband sensitizers for erbium-doped planar optical amplifiers: review," J. Opt. Soc. Am. B 21, 871-892 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-5-871


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9, 234–250 (1991).
  2. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).
  3. S. Hüffner, Optical Spectra of Transparent Rare-Earth Compounds (Academic, New York, 1978).
  4. G. N. van den Hoven, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886–1888 (1996).
  5. M. K. Smit, “Integrated optics in silicon-based aluminium oxide,” Ph.D. thesis (Delft University of Technology, Delft, The Netherlands, 1991).
  6. R. N. Ghosh, J. Shmulovich, C. F. Kane, M. R. X. de Barros, G. Nykolak, A. J. Bruce, and P. C. Becker, “8-mV threshold Er3+-doped planar waveguide amplifier,” IEEE Photon. Technol. Lett. 8, 518–520 (1996).
  7. T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguchi, “Amplification in erbium-doped silica-based planar lightwave circuits,” Electron. Lett. 28, 1818–1819 (1992).
  8. Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922–2924 (1997).
  9. G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79, 1258–1266 (1996).
  10. P. G. Kik and A. Polman, “Erbium-doped optical-waveguide amplifiers in silicon,” MRS Bull. 23, 48–54 (1998).
  11. P. G. Kik and A. Polman, “Cooperative upconversion as the gain-limiting factor in Er-doped miniature Al2O3 optical waveguide amplifiers,” J. Appl. Phys. 93, 5008–5012 (2003).
  12. M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, and A. J. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56, 9302–9318 (1997).
  13. E. Cantelar, J. A. Munoz, J. A. Sanz-García, and F. Cussó, “Yb3+ to Er3+ energy transfer in LiNbO3,” J. Phys. Condens. Matter 10, 8893–8903 (1998).
  14. S. Taccheo, P. Laporta, and C. Svelto, “Wide tuneable single-frequency erbium–ytterbium phosphate glass laser,” Appl. Phys. Lett. 68, 2621–2624 (1996).
  15. D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263&264, 369–381 (2000).
  16. J. E. Townsend, W. L. Barnes, K. P. Jedrzejewski, and S. G. Grubb, “Yb3+-sensitized, Er3+-doped silica optical fibre with ultrahigh transfer efficiency and gain,” Electron. Lett. 27, 1958–1959 (1991).
  17. J. Nilsson, S. U. Alam, J. A. Alvarez-Chavez, P. W. Turner, W. A. Clarkson, and A. B. Grudinin, “High-power and tunable operation of erbium–ytterbium-codoped, cladding-pumped fiber lasers,” IEEE J. Quantum Electron. 37, 987–994 (2003).
  18. C. Strohhöfer and A. Polman, “Absorption and emission spectroscopy in Er3+–Yb3+-doped aluminum oxide waveguides,” Opt. Mater. (Amsterdam, Neth.) 21, 705–712 (2003).
  19. M. E. Fermann, D. C. Hanna, D. P. Shepherd, P. J. Suni, and J. E. Townsend, “Efficient operation of an Yb-sensitized Er fibre laser at 1.56 μm,” Electron. Lett. 24, 1135–1136 (1988).
  20. J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouh, A. Beguin, S. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
  21. C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+–Yb3+-doped waveguide amplifiers,” J. Appl. Phys. 90, 4314–4320 (2001).
  22. See, e.g., A. Polman, “Erbium-implanted thin-film photonic materials,” J. Appl. Phys. 82, 1–39 (1997), and references therein.
  23. S. Coffa, G. Franzó, F. Priolo, A. Polman, and R. Serna, “Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si,” Phys. Rev. B 49, 16313–16320 (1994).
  24. P. N. Favennec, H. L’Haridon, D. Moutonnet, M. Salvi, and M. Gauneau, “Optical activation of Er3+ implanted in silicon by oxygen impurities,” J. Appl. Phys. 29, 524–526 (1990).
  25. N. Hamelin, P. G. Kik, J. F. Suyver, K. Kikoin, A. Polman, A. Schönecker, and F. W. Saris, “Energy backtransfer and infrared photoresponse in erbium-doped, silicon p-n diodes,” J. Appl. Phys. 88, 5381–5387 (2000).
  26. T. Kimura, A. Yokoi, H. Horiguchi, R. Saito, T. Ikoma, and A. Sato, “Electrochemical Er doping of porous silicon and its room-temperature luminescence at ≈1.54 μm,” Appl. Phys. Lett. 65, 983–985 (1994).
  27. Jung H. Shin, G. N. van den Hoven, and A. Polman, “Direct experimental evidence for trap-state mediated excitation of Er3+ in silicon,” Appl. Phys. Lett. 67, 377–379 (1995).
  28. S. Lombardo, S. U. Campisano, G. N. van den Hoven, A. Cacciato, and A. Polman, “Room-temperature luminescence from Er-implanted semi-insulating polycrystalline silicon,” Appl. Phys. Lett. 63, 1942–1944 (1993).
  29. S. Lombardo, S. U. Campisano, G. N. van den Hoven, and A. Polman, “Erbium in oxygen-doped silicon: electroluminescence,” J. Appl. Phys. 77, 6504–6510 (1995).
  30. S. Lombardo, S. U. Campisano, G. N. van den Hoven, and A. Polman, “Room-temperature luminescence in semi-insulating polycrystalline silicon implanted with Er,” Nucl. Instrum. Methods Phys. Res. B 96, 378–381 (1995).
  31. G. N. van den Hoven, Jung H. Shin, A. Polman, S. Lombardo, and S. U. Campisano, “Erbium in oxygen-doped silicon: optical excitation,” J. Appl. Phys. 78, 2642–2650 (1995).
  32. M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, “1.54-μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: evidence for energy transfer from Si nanocrystals to Er3+,” Appl. Phys. Lett. 71, 1198–1200 (1997).
  33. M. Fujii, M. Yoshida, S. Hayashi, and K. Yamamoto, “Photoluminescence from SiO2 films containing Si nanocrystals and Er: effects of nanocrystalline size on the photoluminescence efficiency of Er3+,” J. Appl. Phys. 84, 4525–4531 (1998).
  34. J. St. John, J. L. Coffer, Y. Chen, and R. F. Pinizzotto, “Synthesis and characterization of discrete luminescent erbium-doped silicon nanocrystals,” J. Am. Chem. Soc. 121, 1888–1892 (1998).
  35. C. E. Chryssou, A. J. Kenyon, T. S. Iwayama, C. W. Pitt, and D. E. Hole, “Evidence of energy coupling between Si nanocrystals and Er3+ in ion-implanted silica thin films,” Appl. Phys. Lett. 75, 2011–3013 (1999).
  36. G. Franzò, V. Vinciguerra, and F. Priolo, “The excitation mechanism of rare-earth ions in silicon nanocrystals,” Appl. Phys. A 69, 3–12 (1999).
  37. P. G. Kik, M. L. Brongersma, and A. Polman, “Strong exciton-erbium coupling in Si-nanocrystal-doped SiO2,” Appl. Phys. Lett. 76, 2325–2327 (2000).
  38. P. G. Kik and A. Polman, “Exciton–erbium interactions in Si-nanocrystal-doped SiO2,” J. Appl. Phys. 88, 1992–1998 (2000).
  39. P. G. Kik and A. Polman, “Gain limiting processes in Er-doped, Si-nanocrystal waveguides in SiO2,” J. Appl. Phys. 91, 534–536 (2002).
  40. C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B 48, 11024–11036 (1993).
  41. J. Valenta, R. T. Juhasz, and J. Linnros, “Photoluminescence spectroscopy of single silicon quantum dots,” Appl. Phys. Lett. 80, 1070–1072 (2002).
  42. P. G. Kik, “Energy transfer in erbium-doped optical waveguides based on silicon,” Ph.D. thesis (FOM-Institute for Atomic and Molecular Physics, Amsterdam, The Netherlands, 2000).
  43. D. Kovalev, J. Diener, H. Heckler, G. Polisski, N. Künzner, and F. Koch, “Optical absorption cross sections of Si nanocrystals,” Phys. Rev. B 61, 4485–4487 (2000).
  44. M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Atwater, “Size-dependent electron–hole exchange interaction in Si nanocrystals,” Appl. Phys. Lett. 76, 351–353 (2000).
  45. We assume that the nanocrystal absorption cross section and spontaneous emission lifetime are not affected by the presence of Er.
  46. F. Auzel, in Radiationless Processes, B. DiBartolo, ed. (Plenum, New York, 1980).
  47. F. Priolo, G. Franzò, S. Coffa, and A. Carnera, “Excitation and nonradiative de-excitation processes of Er3+ in crystalline Si,” Phys. Rev. B 57, 4443–4455 (1998).
  48. K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, “Defect-related versus excitonic visible light emission from ion-beam-synthesized Si nanocrystals in SiO2,” Appl. Phys. Lett. 69, 2033–2035 (1996).
  49. G. Franzó, D. Pacifici, V. Vinciguerra, F. Priolo, and F. Iacona, “Er3+ ions–Si nanocrystal interactions and their effects on the luminescence properties,” Appl. Phys. Lett. 76, 2167–2169 (2000).
  50. H. S. Han, S. Y. Seo, and J. H. Shin, “Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide,” Appl. Phys. Lett. 79, 4568–4570 (2001).
  51. D. Pacifici, G. Franzò, F. Priolo, F. Iacona, and L. Dal Negro, “Modeling and perspectives of the Si nanocrystals–Er interaction for optical amplification,” Phys. Rev. B 67, 245301 (2003).
  52. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. A 136, 954–957 (1964).
  53. W. J. Miniscalco and R. S. Quimby, “General procedure for the analysis of Er3+ cross sections,” Opt. Lett. 16, 258–260 (1991).
  54. Hak-Seung Han, Se-Young Seo, Jung H. Shin, and Namkyoo Park, “Coefficient determination related to optical gain in erbium-doped, silicon-rich silicon oxide waveguide amplifier,” Appl. Phys. Lett. 81, 3720–3722 (2002).
  55. C. Strohhöfer and A. Polman, “Silver as a sensitizer for erbium,” Appl. Phys. Lett. 81, 1414–1416 (2002).
  56. R. V. Ramaswamy and R. Srivistava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol. 6, 984–1000 (1988).
  57. M. Mesnaoui, M. Maazaz, C. Parent, B. Tanguy, and G. LeFlem, “Spectroscopic properties of Ag+ ions in phosphate glasses of NaPO3–AgPO3 system,” Eur. J. Solid State Inorg. Chem. 29, 1001–1013 (1992).
  58. A. Meijerink, M. M. E. van Heek, and G. Blasse, “Luminescence of Ag+ in crystalline and glassy SrB4O7,” J. Phys. Chem. Solids 54, 901–906 (1993).
  59. D. M. Peters, C. Strohhöfer, M. L. Brongersma, J. van der Elsken, and A. Polman, “Formation mechanism of silver nanocrystals made by ion irradiation of Na+↔Ag+ ion-exchanged sodalime silicate glass,” Nucl. Instrum. Methods Phys. Res. B 168, 237–244 (2000).
  60. M. A. Villegas, J. M. Fernandez Navarro, S. E. Paje, and J. Llopis, “Optical spectroscopy of a soda lime glass exchanged with silver,” Phys. Chem. Glasses 37, 248–253 (1996).
  61. B. Booth, in Polymers for Lightwave and Integrated Optics, L. A. Hornak, ed. (Dekker, New York, 1992).
  62. L. H. Slooff, A. Polman, M. P. Oude Wolbers, F. C. J. M. van Veggel, D. Reinhoudt, and J. W. Hofstraat, “Optical properties of erbium-doped organic polydentate cage complexes,” J. Appl. Phys. 83, 497–503 (1998).
  63. A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70, 3778–3784 (1991).
  64. E. Snoeks, G. N. van den Hoven, and A. Polman, “Optical doping of soda-lime-silicate glass with erbium by ion implantation,” J. Appl. Phys. 73, 8179–8183 (1993).
  65. G. N. van den Hoven, E. Snoeks, A. Polman, J. W. M. van Uffelen, Y. S. Oei, and M. K. Smit, “Photoluminescence characterization of Er-implanted Al2O3 films,” Appl. Phys. Lett. 62, 3065–3067 (1993).
  66. J. N. Sandoe, P. H. Sarkies, and S. Parke, “Variation of Er3+ cross section for stimulated emission with glass composition,” J. Phys. D 5, 1788–1799 (1972).
  67. G. N. van den Hoven, J. A. van der Elsken, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Absorption and emission cross sections of Er3+ in Al2O3 slab waveguides,” Appl. Opt. 36, 3338–3341 (1997).
  68. M. P. Oude Wolbers, “Lanthanide ion complexes and their luminescence properties,” Ph.D. thesis (University of Twente, Enschede, The Netherlands, 1997).
  69. V. L. Ermolaev and E. B. Sveshnikova, “The application of luminescence-kinetic methods in the study of the formation of lanthanide ion complexes in solution,” Russ. Chem. Rev. 63, 905–922 (1994).
  70. G. F. De Sa, O. L. Malta, C. de Mello Donega, A. M. Simas, R. L. Longo, P. A. Santa-Cruz, and E. F. da Silva, Jr., “Spectroscopic properties and design of highly luminescent lanthanide coordination complexes,” Coord. Chem. Rev. 196, 165–195 (2000).
  71. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
  72. G. A. Hebbink, L. Grave, L. A. Woldering, D. N. Reinhoudt, and F. C. J. M. van Veggel, “Unexpected sensitization efficiency of the near-infrared Nd3+, Er3+, and Yb3+ emission by fluorescein compared to eosin and erythrosin,” J. Phys. Chem. A 107, 2483–2491 (2003), and references cited.
  73. S. I. Klink, L. Grave, M. H. V. Werts, F. A. J. Geurts, J. W. Hofstraat, D. N. Reinhoudt, and F. C. J. M. van Veggel, “A systematic study of the photophysical processes in polydentate triphenylene-functionalized Eu3+, Tb3+, Nd3+, Yb3+, and Er3+ complexes,” J. Phys. Chem. A 104, 5457–5468 (2000).
  74. M. P. Oude Wolbers, F. C. J. M. van Veggel, F. G. A. Peters, E. S. E. van Beelen, J. W. Hofstraat, F. A. J. Geurts, and D. N. Reinhoudt, “Sensitized near-infrared emission from Nd3+ and Er3+ complexes of fluorescein-bearing calix[4]arene cages,” Chem.-Eur. J. 4, 772–780 (1998).
  75. N. M. Shavaleev, L. P. Moorcraft, S. J. A. Pope, Z. R. Bell, S. Faulkner, and M. D. Ward, “Sensitised near-infrared emission from lanthanides using a covalently attached Pt(II) fragment as an antenna group,” Chem. Commun. (Cambridge) 10, 1134–1135 (2003).
  76. M. H. V. Werts, J. W. Verhoeven, and J. W. Hofstraat, “Efficient visible light sensitisation of water-soluble near-infrared luminescent lanthanide complexes,” J. Chem. Soc., Perkin Trans. 2 3, 433–440 (2000).
  77. M. H. V. Werts, J. W. Hofstraat, F. A. J. Geurts, and J. W. Verhoeven, “Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium(III), neodymium(III) and erbium(III) chelates,” Chem. Phys. Lett. 276, 196–201 (1997).
  78. S. I. Klink, H. Keizer, and F. C. J. M. van Veggel, “Organo-d-metal complexes as new class of photosensitizers for near-infrared lanthanide emission,” Angew. Chem., Int. Ed. 39, 4319–4321 (2000).
  79. F. R. Gonçalves e Silva, O. L. Malta, C. Reinhard, H. U. Güdel, C. Piguet, J. E. Moser, and J.-C. G. Bünzli, “Visible and near-infrared luminescence of lanthanide-containing, dimetallic, triple-stranded helicates: energy transfer mechanisms in the SmIII and YbIII molecular edifices,” J. Phys. Chem. A 106, 1670–1677 (2002).
  80. G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, Berlin, 1994).
  81. G. A. Hebbink, S. I. Klink, L. Grave, P. G. B. Oude Alink, and F. C. J. M. van Veggel, “Singlet energy transfer as the main pathway in the sensitization of near-infrared Nd3+ luminescence by dansyl and lissamine dyes,” ChemPhysChem 3, 1014–1018 (2002), and references cited therein.
  82. G. A. Hebbink, S. I. Klink, P. G. B. Oude Alink, and F. C. J. M. van Veggel, “Visible and near-infrared light emitting calix[4]arene-based ternary lanthanide complexes,” Inorg. Chim. Acta 317, 114–120 (2001). Erratum, 323, 171 (2001).
  83. S. I. Klink, G. A. Hebbink, L. Grave, P. G. B. Oude Alink, F. C. J. M. van Veggel, and M. H. V. Werts, “Synergistic com- plexation of Eu3+ by a polydentate ligand and a bidentate antenna to obtain ternary complexes with high luminescence quantum yields,” J. Phys. Chem. A 106, 3681–3689 (2002).
  84. I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules (Academic, New York, 1971).
  85. S. I. Klink, G. A. Hebbink, L. Grave, F. C. J. M. van Veggel, D. N. Reinhoudt, L. H. Slooff, A. Polman, and J. W. Hofstraat, “Sensitized near-infrared luminescence from polydentate, triphenylene-functionalized Nd3+, Yb3+, and Er3+ complexes,” J. Appl. Phys. 86, 1181–1185 (1999).
  86. R. H. Woudenberg and T. O. Boonstra, “Polymers comprising a fluorinated carbonate moiety,” International patent, deposited September 3, 1998, WO 9838237.
  87. L. H. Slooff, A. Polman, S. I. Klink, L. Grave, F. C. J. M. van Veggel, and J. W. Hofstraat, “Concentration effects in the photodegradation of lissamine-functionalized neodymium complexes in polymer waveguides,” J. Opt. Soc. Am. B 18, 1690–1694 (2001).
  88. M. J. Weber, “Radiative and multiphonon relaxation of rare-earth ions in Y2O3,” Phys. Rev. 171, 283–291 (1968).
  89. O. H. Park, S. Y. Seo, B. S. Bae, and J. H. Shin, “Indirect excitation of Er3+ in solgel hybrid films doped with an erbium complex,” Appl. Phys. Lett. 82, 2787–2789 (2003).
  90. L. H. Slooff, A. Polman, F. Cacialli, R. H. Friend, G. A. Hebbink, F. C. J. M. van Veggel, and D. N. Reinhoudt, “Near-infrared electroluminescence of polymer light-emitting diodes doped with a lissamine-sensitized Nd3+ complex,” Appl. Phys. Lett. 78, 2122–2124 (2001).
  91. Y. Kawamura, Y. Wada, and S. Yanagida, “Near-infrared photoluminescence and electroluminescence of neodymium(III), erbium(III) and ytterbium (III) complexes,” J. Appl. Phys. 40, 350–356 (2001).
  92. L. H. Slooff, P. G. Kik, A. Tip, and A. Polman, “Pumping planar waveguide amplifiers using a coupled waveguide system,” J. Lightwave Technol. 19, 1740–1744 (2001).
  93. G. A. Hebbink, J. W. Stouwdam, D. N. Reinhoudt, and F. C. J. M. van Veggel, “Lanthanide(III)-doped nanoparticles that emit in the near-infrared,” Adv. Mater. (Weinheim, Ger.) 14, 1147–1150 (2002).
  94. J. W. Stouwdam and F. C. J. M. van Veggel, “Near-infrared emission of redispersible Er3+-, Nd3+-, and Ho3+-doped LaF3 nanoparticles,” Nano Lett. 2, 733–737 (2002).
  95. P. G. Kik, A. Polman, S. Libertino, and S. Coffa, “Design and performance of an erbium-doped silicon waveguide detector operating at 1.5 μm,” J. Lightwave Technol. 20, 862–867 (2002).
  96. S.-Y. Se, J. H. Shin, B.-S. Bae, N. Park, J. J. Penninkhof, and A. Polman, “Erbium–thulium interaction in broadband infrared luminescent silicon-rich silicon oxide,” Appl. Phys. Lett. 82, 3445–3447 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited