OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 5 — May. 1, 2004
  • pp: 914–922

Broadband noise filtering in random sequences of coherent pulses using the temporal Talbot effect

Carlos R. Fernández-Pousa, Felipe Mateos, Laura Chantada, Marı́a Teresa Flores-Arias, Carmen Bao, Marı́a Victoria Pérez, and Carlos Gómez-Reino  »View Author Affiliations

JOSA B, Vol. 21, Issue 5, pp. 914-922 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (200 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The exact power spectrum of the detected optical envelope of a train of random pulses after the temporal Talbot effect is computed. The input train into a Talbot device consists of a sequence of chirped Gaussian pulses whose appearance in the train is probabilistic. Dispersion provides a Talbot replica of the original train. The resulting noise spectrum shows narrow spectral windows below a broadband output noise envelope. The noise-envelope width depends on the value of the chirp, coinciding with the single-pulse spectrum only if the pulses are unchirped. The locations and width of the spectral windows depend on the values of the chirp and the temporal width of the pulses in the train. For wide pulses, high output harmonics, and low dispersive devices, these windows are cosine-squared modulated. The properties of this modulation depend only on the statistics of the appearance of the pulses.

© 2004 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(060.2340) Fiber optics and optical communications : Fiber optics components
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(320.5550) Ultrafast optics : Pulses

Carlos R. Fernández-Pousa, Felipe Mateos, Laura Chantada, María Teresa Flores-Arias, Carmen Bao, María Victoria Pérez, and Carlos Gómez-Reino, "Broadband noise filtering in random sequences of coherent pulses using the temporal Talbot effect," J. Opt. Soc. Am. B 21, 914-922 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Jannson and J. Jannson, “Temporal self-imaging effect in single-mode fibers,” J. Opt. Soc. Am. 71, 1373–1376 (1981).
  2. I. Shake, H. Tahara, S. Kawanishi, and M. Saruwatari, “High-repetition-rate optical pulse generation by using chirped optical pulses,” Electron. Lett. 34, 792–793 (1998). [CrossRef]
  3. S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, and Y. Ogawa, “Repetition-frequency multiplication of mode-locked pulses using fiber dispersion,” J. Lightwave Technol. 16, 405–410 (1998). [CrossRef]
  4. V. P. Minkovich, A. N. Starodumov, V. I. Borisov, V. I. Ledebev, and S. N. Perepechko, “Temporal interference of coherent laser pulses in optical fibers,” Opt. Commun. 192, 231–235 (2001). [CrossRef]
  5. J. Azaña and M. A. Muriel, “Technique for multiplying the repetition rates of periodic trains of pulses by means of a temporal self-imaging effect in chirped fiber gratings,” Opt. Lett. 24, 1672–1674 (1999). [CrossRef]
  6. S. Longhi, M. Marano, P. Laporta, O. Svelto, M. Belmonte, B. Agogliati, L. Arcangeli, V. Prunei, M. N. Zervas, and M. Ibsen, “40-GHz pulse-train generation at 1.5 μm with a chirped fiber grating as a frequency multiplier,” Opt. Lett. 25, 1481–1483 (2000). [CrossRef]
  7. N. K. Berger, B. Vodonos, S. Atkins, V. Smulakovsky, A. Bekker, and B. Fischer, “Compression of periodic light pulses using all-optical repetition rate multiplication,” Opt. Commun. 217, 343–349 (2003). [CrossRef]
  8. M. Marano, S. Longhi, P. Laporta, M. Belmonte, and B. Agogliati, “All-optical square-pulse generation and multiplication at 1.5 μm by use a novel class of fiber Bragg gratings,” Opt. Lett. 26, 1615–1617 (2001). [CrossRef]
  9. J. Azaña, P. Kockaert, R. Slavík, L. R. Chen, and S. LaRochelle, “Generation of a 100-GHz optical pulse train by pulse repetition-rate multiplication using superimposed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 15, 413–415 (2003). [CrossRef]
  10. D. A. Chestnut, C. J. S. de Matos, and J. R. Taylor, “4x repetition-rate multiplication and Raman compression of pulses in the same optical fiber,” Opt. Lett. 27, 1262–1264 (2002). [CrossRef]
  11. S. Atkins and B. Fischer, “All-optical pulse rate multiplication using fractional Talbot effect and field-to-intensity conversion with cross-gain modulation,” IEEE Photon. Technol. Lett. 15, 132–134 (2003). [CrossRef]
  12. B. Fischer, B. Vodonos, S. Atkins, and A. Bekker, “Dispersion-mode pulsed laser,” Opt. Lett. 25, 728–730 (2000). [CrossRef]
  13. S. Atkins, B. Vodonos, A. Bekker, and B. Fischer, “Fractional dispersion modes in a pulsed fiber laser,” Opt. Commun. 222, 393–397 (2003). [CrossRef]
  14. A. Kalestynski and B. Smolinska, “Self-restoration of the autoidolon of defective periodic objects,” Opt. Acta 25, 125–134 (1978). [CrossRef]
  15. K. Patorski, “The self-imaging phenomenon and its applications,” Prog. Opt. 27, 3–74 (1989).
  16. C. R. Fernández-Pousa, F. Mateos, L. Chantada, M. T. Flores-Arias, C. Bao, M. V. Pérez, and C. Gómez-Reino, “Random jitter smoothing by Talbot effect. I. Variance,” J. Opt. Soc. Am. B (to be published).
  17. J. Azaña, “Temporal self-imaging effects for periodic optical pulse sequences of finite duration,” J. Opt. Soc. Am. B 20, 83–90 (2003). [CrossRef]
  18. A. Papoulis, “Pulse compression, fiber communications, and diffraction: a unified approach,” J. Opt. Soc. Am. A 11, 3–13 (1994). [CrossRef]
  19. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, Boston, 2001).
  20. A. Papoulis, Probability, Random Variables and Stochastic Processes, 2nd ed. (McGraw-Hill, New York, 1984).
  21. R. P. Scott, C. Langrock, and B. H. Kolner, “High-dynamic-range laser amplitude and phase noise measurement techniques,” IEEE J. Sel. Top. Quantum Electron. 7, 641–655 (2001). [CrossRef]
  22. F. Rana, H. L. T. Lee, R. J. Ram, M. E. Grein, L. A. Jiang, E. P. Ippen, and H. A. Haus, “Characterization of the noise and correlations in harmonically mode-locked-lasers,” J. Opt. Soc. Am. B 19, 2609–2621 (2002). [CrossRef]
  23. T. Yilmaz, C. M. Depriest, A. Braun, J. H. Abeles, and P. J. Delfyett, “Noise in fundamental and harmonic mode-locked semiconductor lasers: experiments and simulations,” IEEE J. Quantum Electron. 39, 838–848 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited