OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 5 — May. 1, 2004
  • pp: 923–934

Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers

Harald G. L. Schwefel, Nathan B. Rex, Hakan E. Tureci, Richard K. Chang, A. Douglas Stone, Tahar Ben-Messaoud, and Joseph Zyss  »View Author Affiliations


JOSA B, Vol. 21, Issue 5, pp. 923-934 (2004)
http://dx.doi.org/10.1364/JOSAB.21.000923


View Full Text Article

Enhanced HTML    Acrobat PDF (698 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recent experiments on similarly shaped polymer microcavity lasers show a dramatic difference in the far-field emission patterns. We show, for different deformations of the ellipse, quadrupole and hexadecapole, that the large differences in the far-field emission patterns are explained by the differing ray dynamics corresponding to each shape. Analyzing the differences in the appropriate phase space for ray motion, it is shown that the differing geometries of the unstable manifolds of periodic orbits are the decisive factors in determining the far-field pattern. Surprisingly, we find that strongly chaotic ray dynamics is compatible with highly directional emission in the far field.

© 2004 Optical Society of America

OCIS Codes
(140.1540) Lasers and laser optics : Chaos
(140.3410) Lasers and laser optics : Laser resonators
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.4780) Lasers and laser optics : Optical resonators
(350.3950) Other areas of optics : Micro-optics

Citation
Harald G. L. Schwefel, Nathan B. Rex, Hakan E. Tureci, Richard K. Chang, A. Douglas Stone, Tahar Ben-Messaoud, and Joseph Zyss, "Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers," J. Opt. Soc. Am. B 21, 923-934 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-5-923


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. K. Chang and A. K. Campillo, eds., Optical Processes in Microcavities (World Scientific, Singapore, 1996).
  2. Y. Yamamoto and R. E. Slusher, “Optical processes in microcavities,” Phys. Today 46, 66–73 (1993). [CrossRef]
  3. J. U. Nöckel, A. D. Stone, and R. K. Chang, “Q-spoiling and directionality in deformed ring cavities,” Opt. Lett. 19, 1693–1695 (1994). [CrossRef]
  4. J. U. Nöckel, A. D. Stone, G. Chen, H. L. Grossman, and R. K. Chang, “Directional emission from asymmetric resonant cavities,” Opt. Lett. 21, 1609–1611 (1996). [CrossRef]
  5. J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Nature 385, 45–47 (1997). [CrossRef]
  6. S. Chang, R. K. Chang, A. D. Stone, and J. U. Nöckel, “Observation of emission from chaotic lasing modes in deformed microspheres: displacement by the stable-orbit modes,” J. Opt. Soc. Am. B 17, 1828–1834 (2000). [CrossRef]
  7. S. Lacey, H. Wang, D. H. Foster, and J. U. Nöckel, “Directional tunnel escape from nearly spherical optical resonators,” Phys. Rev. Lett. 91, 033902 (2003). [CrossRef]
  8. S. Chang, N. B. Rex, R. K. Chang, G. B. Chong, and L. J. Guido, “Stimulated emission and lasing in whispering gallery modes of GaN microdisk cavities,” Appl. Phys. Lett. 75, 3719–3719 (1999). [CrossRef]
  9. N. B. Rex, H. E. Tureci, H. G. L. Schwefel, R. K. Chang, and A. D. Stone, “Fresnel filtering in lasing emission from scarred modes of wave-chaotic optical resonators,” Phys. Rev. Lett. 88, 094102 (2002). [CrossRef] [PubMed]
  10. N. B. Rex, “Regular and chaotic orbit gallium nitride microcavity lasers,” Ph.D. dissertation (Yale University, New Haven, Conn., 2001).
  11. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  12. H. E. Tureci, H. G. L. Schwefel, Ph. Jacrod, and A. Douglas Stone, “Modes of wave-chaotic dielectric resonators,” Prog. Opt. (to be published).
  13. G. D. Birkhoff, “On the periodic motion of dynamical systems,” Acta Math. 50, 359–379 (1927). [CrossRef]
  14. H. Poincaré, Les Méthodes Nouvelles de la Méchanique Céleste (Gauthier-Villars, Paris, France, 1892).
  15. V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer, New York, 1989).
  16. M. V. Berry, “Regularity and chaos in classical mechanics, illustrated by three deformations of a circular billiard,” Eur. J. Phys. 2, 91–102 (1981). [CrossRef]
  17. J. U. Nöckel, “Resonances in nonintegrable open systems,” Ph.D. dissertation (Yale University, New Haven, Conn., 1997).
  18. H. Poritsky, “The billiard ball problem on a table with convex boundary: an illustrative dynamical problem,” Ann. Math. 51, 446–470 (1950). [CrossRef]
  19. E. Y. Amiran, “Integrable smooth planar billiards and evolutes,” New York J. Math. 3, 32–47 (1997).
  20. L. A. Bunimovich, “On ergodic properties of nowhere dispersing billiards,” Commun. Math. Phys. 65, 295–312 (1977). [CrossRef]
  21. J. B. Keller, “Asymptotic solution of eigenvalue problems,” Ann. Phys. (N.Y.) 9, 24–75 (1960). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited