OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 5 — May. 1, 2004
  • pp: 951–957

Thermal analysis and optical properties of Yb3+/Er3+-codoped oxyfluoride germanate glasses

Zhongmin Yang, Shiqing Xu, Lili Hu, and Zhonghong Jiang  »View Author Affiliations


JOSA B, Vol. 21, Issue 5, pp. 951-957 (2004)
http://dx.doi.org/10.1364/JOSAB.21.000951


View Full Text Article

Acrobat PDF (172 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Yb3+/Er3+-codoped Na2O–Al2O3–GeO2–PbO–PbF2 glasses that are suitable for use in fiber lasers, amplifiers, and waveguide devices have been fabricated and characterized. The density, refractive indices, optical absorptions, Judd–Ofelt parameters, and spontaneous-transition probabilities of the glasses have been measured and calculated. Intense and broad 1.53-μm infrared fluorescence and visible upconversion luminescence were observed under 976-nm diode laser excitation. For the 1.53-μm emission band, the full widths at the half-maximum increase and the peak wavelengths are blueshifted with an increase of PbF2. The stimulated-emission cross sections were calculated from the measured-absorption cross section according to the McCumber theory. The monotonically reduced emission cross section arises from the decreased refractive indices of glasses and the increased linewidth of the infrared fluorescence spectrum. For the upconversion emissions centered at 524, 547, and 660 nm, the emission intensity changes remarkably with PbF2 contents from 0 to 15 mol.%. The quadratic dependence of the green and red emissions on excitation power indicates that a two-photon absorption process occurs under the 976-nm excitation. The relatively long lifetimes of the Er3+ 4S3/2 and 4F9/2 levels for the NAGF3 glass gives rise to a much more intense upconversion emission.

© 2004 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.4670) Materials : Optical materials
(260.2510) Physical optics : Fluorescence

Citation
Zhongmin Yang, Shiqing Xu, Lili Hu, and Zhonghong Jiang, "Thermal analysis and optical properties of Yb3+/Er3+-codoped oxyfluoride germanate glasses," J. Opt. Soc. Am. B 21, 951-957 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-5-951


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Wachtler, A. Speghini, S. Pigorini, R. Rolli, and M. Bettinelli, “Phonon sidebands and vibrational properties of Eu3+ doped lead germanate glasses,” J. Non-Cryst. Solids 217, 111–114 (1997).
  2. R. Reisfeld, L. Boehm, Y. Eckstein, and N. Lienlich, “Multiphonon relaxation of rare earth ions in borate, phosphate, germanate and tellurite glasses,” J. Lumin. 10, 193–204 (1975).
  3. M. F. Joubert, “Photon avalanche upconversion in rare earth laser material,” Opt. Mater. 11, 181–203 (1999).
  4. W. Lozano, C. B. de Araújo, and Y. Messaddeq, “Enhanced frequency upconversion in Er3+ doped fluoroindate glass due to energy transfer from Tm3+,” J. Non-Cryst. Solids 311, 318–322 (2002).
  5. Z. Pan and S. H. Morgan, “Raman spectra and thermal analysis of a new lead-tellurium-germanate glass system,” J. Non-Cryst. Solids 210, 130–135 (1997).
  6. H. Yamada and K. Kojima, “Upconversion fluorescence in Er3+-doped Na2O–GeO2 glasses,” J. Non-Cryst. Solids 259, 57–62 (1999).
  7. G. S. Henderson and M. E. Fleet, “The structure of glasses along the Na2O–GeO2 join,” J. Non-Cryst. Solids 134, 259–269 (1991).
  8. J. R. Lincoln, C. J. MacKechnie, J. Wang, W. S. Brockleby, R. S. Deol, A. Pearson, D. C. Hanna, and D. N. Payne, “New glass of fiber laser based on lead-germanate glass,” Electron. Lett. 28, 1021–1022 (1992).
  9. J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. MacKechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066–8075 (1993).
  10. K. Schuster, J. Kirchhof, J. Kobelke, A. Schwuchow, and M. Scheffler, “Heavy metal oxide glasses as potential materials for VIS fiber laser,” Proc. SPIE 3849, 116–123 (1999).
  11. S. Xu, Z. Yang, S. Dai, J. Yang, L. Wen, L. Hu, and Z. Jiang, “Spectral properties of erbium-doped oxyfluoride silicate glasses for broadband optical amplifiers,” Chin. Phys. Lett. 20, 905–908 (2003).
  12. J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, and Z. Jiang, “Spectroscopic properties and thermal stability of erbium-doped bismuth-based glass for optical amplifier,” J. Appl. Phys. 93, 977–983 (2003).
  13. S. Hayakawa, A. Osaka, H. Nishioka, S. Matsumoto, and Y. Miura, “Structure of lead oxyfluorosilicate glasses: x-ray photoelectron and nuclear magnetic resonance spectroscopy and molecular dynamics simulation,” J. Non-Cryst. Solids 272, 103–108 (2000).
  14. R. Lebullenger, L. A. O. Nunes, and A. C. Hernandes, “Properties of glasses from fluoride to phosphate composition,” J. Non-Cryst. Solids 284, 55–60 (2001).
  15. J. J. Chen, “Formation and structure of some alkali and alkaline-earth fluoroborate glasses,” J. Chin. Silicates 11, 55–63 (1983).
  16. J. E. Shelby and E. A. Bolden, “Formation and properties of lead fluorogermanate glasses,” J. Non-Cryst. Solids 142, 269–277 (1992).
  17. J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new glass candidate for fiber devices,” Opt. Mater. 3, 187–203 (1994).
  18. M. J. Weber, “Radiative and multiphonon relaxation of rare-earth ions in Y2O3,” Phys. Rev. 171, 283–291 (1968).
  19. M. J. Weber, “Spontaneous emission probabilities and quantum efficiencies for excited states of Pr3+ in LaF3,” J. Chem. Phys. 48, 4774–4780 (1968).
  20. R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/24I11/2 induced-emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. QE-12, 102–111 (1976).
  21. M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–272 (1967).
  22. D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd–Ofelt analysis of the Er3+(4f11) absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93, 2041–2046 (2003).
  23. J. Heo, Y. B. Shin, and J. N. Jang, “Spectroscopic analysis of Tm3+ in PbO–Bi2O3–Ga2O3 glass,” Appl. Opt. 34, 4284–4289 (1995).
  24. Y. G. Choi, K. H. Kim, and J. Heo, “Spectroscopic properties and energy transfer in PbO–Bi2O3–Ga2O3 glass doped with Er2O3,” J. Am. Ceram. Soc. 82, 2762–2768 (1999).
  25. M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajó, and M. Bettinelli, “Optical properties of rare-earth ions in lead germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
  26. A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glass,” Phys. Rev. B 62, 6215–6227 (2000).
  27. M. Mortier, Y. D. Huang, and F. Auzel, “Crystal field analysis of Er3+-doped glasses: germanate, silicate and ZBLAN,” J. Alloys Compd. 300–301, 407–413 (2000).
  28. D. E. McCumber, “Theory of phonon-terminated optical materials,” Phys. Rev. A 134, A299–A306 (1964).
  29. J. A. Capobianco, G. Prevost, P. P. Proulx, P. Kabro, and M. Bettinelli, “Upconversion properties of Er3+ doped lead silicate glasses,” Opt. Mater. 6, 175–184 (1996).
  30. A. Biswas, G. S. Maciel, R. Kapoor, C. S. Friend, and P. N. Prasad, “Er3+-doped multicomponent sol-gel-processed silica glass for optical signal amplification at 1.5 μm,” Appl. Phys. Lett. 82, 2389–2391 (2003).
  31. H. Lin, E. Y. B. Pun, S. Q. Man, and X. R. Liu, “Optical transitions and frequency upconversion of Er3+ ions in Na2O ⋅ Ca3Al2Ge3O12 glasses,” J. Opt. Soc. Am. B 18, 602–609 (2001).
  32. X. Zhang, K. Pita, S. Buddhudu, E. Daran, Y. L. Lam, and X. R. Liu, “Optical properties and upconversion fluorescence in Er3+-doped ZZA glass,” Opt. Mater. 20, 21–25 (2002).
  33. H. Lin, G. Meredith, S. Jiang, X. Peng, T. Luo, N. Peyghambarian, and E. Y. Pun, “Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass,” J. Appl. Phys. 93, 186–191 (2003).
  34. S. Tanabe, “Spectroscopic studies on multiphonon processes in erbium doped fluoride and oxide glasses,” J. Non-Cryst. Solids 256&257, 282–287 (1999).
  35. D. C. Yeh, W. A. Sibley, M. Suscavage, and M. G. Drexhage, “Multiphonon relaxation and infrared-to-visible conversion of Er3+ and Yb3+ ions in barium-thorium fluoride glass,” J. Appl. Phys. 62, 266–275 (1987).
  36. D. C. Yeh, W. A. Sibley, I. Schneider, R. S. Afzal, and I. Aggarwal, “Intensity-dependent upconversion efficiencies of Er3+ ions in heavy-metal fluoride glass,” J. Appl. Phys. 69, 1648–1653 (1991).
  37. F. Goutaland, Y. Ouerdane, A. Boukenter, and G. Monnom, “Visible emission processes in heavily doped Er/Yb silica optical fibers,” J. Alloys Compd. 275–277, 276 (1998).
  38. E. Maurice, G. Monnom, B. Dussardier, and D. B. Ostrowsky, “Clustering effects on double energy transfer in heavily ytterbium-erbium codoped silica fibers,” J. Opt. Soc. Am. B 13, 693–701 (1996).
  39. M. V. D. Vermelho, A. S. Gouveia-Neto, H. T. Amorim, F. C. Cassanjes, S. J. L. Ribeiro, and Y. Messaddeq, “Temperature investigation of infrared-to-visible frequency upconversion in erbium-doped tellurite glasses excited at 1540 nm,” J. Lumin. 102–103, 755–761 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited