OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 5 — May. 1, 2004
  • pp: 982–988

Stable periodic waves supported by competing cubic-quintic nonlinearity

Yaroslav V. Kartashov, Victor A. Vysloukh, Alexey A. Egorov, and Anna S. Zelenina  »View Author Affiliations


JOSA B, Vol. 21, Issue 5, pp. 982-988 (2004)
http://dx.doi.org/10.1364/JOSAB.21.000982


View Full Text Article

Acrobat PDF (473 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We perform a linear stability analysis of stationary periodic waves in cubic–quintic nonlinear media and show that weak χ(5) nonlinearity can lead to stabilization of cnoidal and destabilization of snoidal periodic wave patterns existing in focusing and defocusing χ(3) media, respectively. Direct computer simulations confirm results of the linear stability analysis. The stabilization of periodic waves is expected to be a common phenomenon in physical systems where focusing–defocusing, attractive–repulsive, nonlinear self-actions compete with each other.

© 2004 Optical Society of America

OCIS Codes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(190.5940) Nonlinear optics : Self-action effects

Citation
Yaroslav V. Kartashov, Victor A. Vysloukh, Alexey A. Egorov, and Anna S. Zelenina, "Stable periodic waves supported by competing cubic-quintic nonlinearity," J. Opt. Soc. Am. B 21, 982-988 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-5-982


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Bramati, W. Chinaglia, S. Minardi, and P. Di Trapani, “Reconstruction of blurred images by controlled formation of spatial solitons,” Opt. Lett. 26, 1409–1411 (2001).
  2. S. Minardi, G. Arrighi, P. Di Trapani, A. Varanavicius, and A. Piskarskas, “Solitonic all-optical switch based on the fractional Talbot effect,” Opt. Lett. 27, 2097–2099 (2002).
  3. J. Petter, J. Schroder, D. Trager, and C. Denz, “Optical control of arrays of photorefractive screening solitons,” Opt. Lett. 28, 438–440 (2003).
  4. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422, 147–150 (2003).
  5. N. N. Akhmediev and A. Ankiewicz, Solitons (Chapman & Hall, London, 1997).
  6. Yu. S. Kivshar and G. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, New York, 2003).
  7. A. M. Kamchatnov, Nonlinear Periodic Waves and Their Modulations (Kluwer Academic, Dordrecht, The Netherlands, 2000).
  8. E. Infeld and R. Rowlands, Nonlinear Waves, Solitons and Chaos (Cambridge U. Press, Cambridge, UK, 1990).
  9. H. C. Yuen and B. M. Lake, Nonlinear Dynamics of Deep-Water Gravity Waves (Academic, New York, 1982).
  10. A. Apolinar-Iribe, N. Korneev, V. Vysloukh, and C. M. Gomez-Sarabia, “Transverse modulational instability of periodic light patterns in photorefractive strontium barium niobate crystal,” Opt. Lett. 27, 2088–2090 (2002).
  11. E. A. Kuznetsov, A. M. Rubenchik, and V. E. Zakharov, “Soliton stability in plasmas and hydrodynamics,” Phys. Rep. 142, 103–165 (1986).
  12. S. E. Fil’chenkov, G. M. Fraiman, and A. D. Yunakovskii, “Instability of periodic solutions of the nonlinear Schrödinger equation,” Sov. J. Plasma Phys. 13, 554–557 (1987).
  13. V. P. Pavlenko and V. I. Petviashvili, “Band theory for the stability of nonlinear periodic waves in plasmas,” Sov. J. Plasma Phys. 8, 117–120 (1982).
  14. V. P. Kudashev and A. B. Mikhailovsky, “Instability of periodic waves described by the nonlinear Schrödinger equation,” Sov. Phys. JETP 63, 972–979 (1986).
  15. Y. V. Kartashov, V. A. Aleshkevich, V. A. Vysloukh, A. A. Egorov, and A. S. Zelenina, “Stability analysis of (1+1)-dimensional cnoidal waves in media with cubic nonlinearity,” Phys. Rev. E 67, 036613 (2003).
  16. D. U. Martin, H. C. Yuen, and P. G. Saffman, “Stability of plane wave solutions of the two-space-dimensional nonlinear Schrödinger equation,” Wave Motion 2, 215–229 (1980).
  17. Y. S. Kivshar and D. E. Pelinovsky, “Self-focusing and transverse instabilities of solitary waves,” Phys. Rep. 331, 117–195 (2000).
  18. Y. V. Kartashov, V. A. Aleshkevich, V. A. Vysloukh, A. A. Egorov, and A. S. Zelenina, “Transverse modulational instability of (2+1)-dimensional cnoidal waves in media with cubic nonlinearity,” J. Opt. Soc. Am. B 20, 1273–1284 (2003).
  19. V. A. Aleshkevich, A. A. Egorov, Y. V. Kartashov, V. A. Vysloukh, and A. S. Zelenina, “Stability analysis of spatiotemporal cnoidal waves in cubic nonlinear media,” Phys. Rev. E 67, 066605 (2003).
  20. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Two-dimensional cnoidal waves in Kerr-type saturable nonlinear media,” Phys. Rev. E 68, 015603(R) (2003).
  21. Y. V. Kartashov, A. A. Egorov, A. S. Zelenina, V. A. Vysloukh, and L. Torner, “Stable multicolor periodic-wave arrays,” Phys. Rev. Lett. 92, 033901 (2004).
  22. Y. V. Kartashov, A. A. Egorov, A. S. Zelenina, V. A. Vysloukh, and L. Torner, “Stabilization of one-dimensional periodic waves by saturation of the nonlinear response,” Phys. Rev. E 68, 065605(R) (2003).
  23. J. C. Bronski, L. D. Carr, B. Deconinck, and J. N. Kutz, “Bose-Einstein condensates in standing waves: The cubic nonlinear Schrödinger equation with a periodic potential,” Phys. Rev. Lett. 86, 1402–1405 (2001).
  24. J. C. Bronski, L. D. Carr, B. Deconinck, J. N. Kutz, and K. Promislow, “Stability of repulsive Bose-Einstein condensates in a periodic potential,” Phys. Rev. E 63, 036612 (2001).
  25. J. C. Bronski, L. D. Carr, R. Carretero-Gonzalez, B. Deconinck, J. N. Kutz, and K. Promislow, “Stability of attractive Bose-Einstein condensates in a periodic potential,” Phys. Rev. E 64, 056615 (2001).
  26. D. Mihalache, D. Mazilu, I. Towers, B. A. Malomed, and F. Lederer, “Stable spatiotemporal spinning solitons in a bimodal cubic–quintic medium,” Phys. Rev. E 67, 056608 (2003).
  27. I. Towers, A. V. Buryak, R. A. Sammut, B. A. Malomed, L.-C. Crasovan, and D. Mihalache, “Stability of spinning ring solitons of the cubic–quintic nonlinear Schrödinger equation,” Phys. Lett. A 288, 292–298 (2001).
  28. B. A. Malomed, L.-C. Crasovan, and D. Mihalache, “Stability of vortex solitons in the cubic–quintic medium,” Physica D 161, 187–201 (2002).
  29. D. Mihalache, D. Mazilu, L.-C. Crasovan, I. Towers, A. V. Buryak, B. A. Malomed, L. Torner, J. P. Torres, and F. Lederer, “Stable spinning optical solitons in three dimensions,” Phys. Rev. Lett. 88, 073902 (2002).
  30. D. Mihalache, D. Mazilu, L.-C. Crasovan, I. Towers, B. A. Malomed, A. V. Buryak, L. Torner, and F. Lederer, “Stable three-dimensional spinning optical solitons supported by competing quadratic and cubic nonlinearities,” Phys. Rev. E 66, 016613 (2002).
  31. O. Bang, Y. S. Kivshar, A. V. Buryak, A. De Rossi, and S. Trillo, “Two-dimensional solitary waves in media with quadratic and cubic nonlinearities,” Phys. Rev. E 58, 5057–5069 (1998).
  32. L.-C. Crasovan, J. P. Torres, D. Mihalache, and L. Torner, “Arresting wave collapse by wave self-rectification,” Phys. Rev. Lett. 91, 063904 (2003).
  33. Y. V. Kartashov, L.-C. Crasovan, D. Mihalache, and L. Torner, “Robust propagation of two-color soliton clusters supported by competing nonlinearities,” Phys. Rev. Lett. 89, 273902 (2002).
  34. L.-C. Crasovan, Y. V. Kartashov, D. Mihalache, L. Torner, Y. S. Kivshar, and V. M. Perez-Garcia, “Soliton molecules: Robust clusters of optical spatiotemporal solitons,” Phys. Rev. E 67, 046610 (2003).
  35. D. Mihalache, D. Mazilu, L.-C. Crasovan, B. A. Malomed, F. Lederer, and L. Torner, “Robust soliton clusters in media with competing cubic and quintic nonlinearities,” Phys. Rev. E 68, 046612 (2003).
  36. R. W. Micallef, V. V. Afanasjev, Y. S. Kivshar, and J. D. Love, “Optical solitons with power-law asymptotics,” Phys. Rev. E 54, 2936–2942 (1996).
  37. H. W. Schurmann and V. S. Serov, “Criteria for existence and stability of soliton solutions of the cubic–quintic nonlinear Schrödinger equation,” Phys. Rev. E 62, 2821–2826 (2000).
  38. J. M. Arnold, “Stability of solitary wave trains in Hamiltonian wave systems,” Phys. Rev. E 60, 979–986 (1999).
  39. F. Smektala, C. Quemard, V. Couderc, and A. Barthelemy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274, 232–237 (2000).
  40. C. Zhan, D. Zhang, D. Zhu, D. Wang, Y. Li, D. Li, Z. Lu, L. Zhao, and Y. Nie, “Third- and fifth-order optical nonlinearities in a new stilbazolium derivative,” J. Opt. Soc. Am. B 19, 369–375 (2002).
  41. L. Gagnon, “Exact traveling-wave solutions for optical models based on the nonlinear cubic–quintic Schrodinger equation,” J. Opt. Soc. Am. A 6, 1477–1483 (1989).
  42. H. W. Schurmann, “Traveling-wave solutions of the cubic–quintic nonlinear Schrödinger equation,” Phys. Rev. E 54, 4312–4320 (1996).
  43. G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, and F. Sanchez, “Experimental and theoreticalstudy of higher-order nonlinearities in chalcogenide glasses,” Opt. Commun. 219, 427–433 (2003).
  44. I. V. Barashenkov, D. E. Pelinovsky, and E. V. Zemlyanaya, “Vibrations and oscillatory instabilities of gap solitons,” Phys. Rev. Lett. 80, 5117–5120 (1998).
  45. A. De Rossi, C. Conti, and S. Trillo, “Stability, multistability and wobbling of optical gap solitons,” Phys. Rev. Lett. 81, 85–88 (1998).
  46. D. Mihalache, D. Mazilu, and L. Torner, “Stability of walking vector solitons,” Phys. Rev. Lett. 81, 4353–4356 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited