OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 6 — Jun. 1, 2004
  • pp: 1113–1126

Hyperfine-structure splittings and absorption strengths of molecular-iodine transitions near the trapping frequencies of francium

Pierre Dubé and Michael Trinczek  »View Author Affiliations


JOSA B, Vol. 21, Issue 6, pp. 1113-1126 (2004)
http://dx.doi.org/10.1364/JOSAB.21.001113


View Full Text Article

Acrobat PDF (445 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using saturated-absorption spectroscopy, we measured the hyperfine-structure splittings of four transitions in the B–X system of 127I2 near 718 nm, namely, of P(78)1–9, R(86)1–9, R(146)2–9, and R(113)3–10. The hyperfine constants ΔeQq and ΔC for these transitions were calculated from the measured splittings. Aided with Doppler line shapes calculated from the hyperfine splittings, and with knowledge of the relative absorption strengths of the nearby transitions from literature, we have measured the dipole moments of P(78)1–9, R(86)1–9, and R(113)3–10 from their integrated absorptions. These measurements, combined with Franck–Condon factors given in the literature, give an electronic transition dipole moment of 3.66(11)× 10−30 Cm [1.10(3) D] for the B–X system of iodine at an R-centroid internuclear distance of 0.293 nm.

© 2004 Optical Society of America

OCIS Codes
(020.2930) Atomic and molecular physics : Hyperfine structure
(020.4900) Atomic and molecular physics : Oscillator strengths
(020.7010) Atomic and molecular physics : Laser trapping
(300.1030) Spectroscopy : Absorption
(300.6170) Spectroscopy : Spectra
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6360) Spectroscopy : Spectroscopy, laser
(300.6380) Spectroscopy : Spectroscopy, modulation
(300.6390) Spectroscopy : Spectroscopy, molecular
(300.6460) Spectroscopy : Spectroscopy, saturation

Citation
Pierre Dubé and Michael Trinczek, "Hyperfine-structure splittings and absorption strengths of molecular-iodine transitions near the trapping frequencies of francium," J. Opt. Soc. Am. B 21, 1113-1126 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-6-1113


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. E. Simsarian, A. Ghosh, G. Gwinner, L. A. Orozco, G. D. Sprouse, and P. A. Voytas, “Magneto-optic trapping of 210Fr,” Phys. Rev. Lett. 76, 3522–3525 (1996).
  2. Z.-T. Lu, K. L. Corwin, K. R. Vogel, and C. E. Wieman, “Efficient collection of 221Fr into a vapor cell magneto-optical trap,” Phys. Rev. Lett. 79, 994–997 (1997).
  3. J. E. Simsarian, L. A. Orozco, G. D. Sprouse, and W. Z. Zhao, “Lifetime measurements of the 7p levels of atomic francium,” Phys. Rev. A 57, 2448–2458 (1998).
  4. J. E. Simsarian, W. Z. Zhao, L. A. Orozco, and G. D. Sprouse, “Two-photon spectroscopy of the francium 8S1/2 level,” Phys. Rev. A 59, 195–199 (1999).
  5. S. G. Porsev and M. G. Kozlov, “Calculation of the nuclear spin-dependent parity-nonconserving amplitude for the (7s, F=4)→(7s, F=5) transition in Fr,” Phys. Rev. A 64, 064101 (2001).
  6. M. S. Safronova and W. R. Johnson, “High-precision calculation of the parity-nonconserving amplitude in francium,” Phys. Rev. A 62, 022112 (2000).
  7. V. A. Dzuba, V. V. Flambaum, and O. P. Sushkov, “Calculation of energy levels, E1 transition amplitudes and parity violation in francium,” Phys. Rev. A 51, 3454–3461 (1995).
  8. E. Biémont, P. Quinet, and V. Van Renterghem, “Theoretical investigation of neutral francium,” J. Phys. B 31, 5301–5314 (1998).
  9. T. M. R. Byrnes, V. A. Dzuba, V. V. Flambaum, and D. W. Murray, “Enhancement factor for the electron electric dipole moment in francium and gold atoms,” Phys. Rev. A 59, 3082–3083 (1999).
  10. C. S. Wood, S. C. Bennett, J. L. Roberts, D. Cho, and C. E. Wieman, “Precision measurement of parity nonconservation in cesium,” Can. J. Phys. 77, 7–75 (1999).
  11. C. S. Wood, S. C. Bennett, D. Cho, B. P. Masterson, J. L. Roberts, C. E. Tanner, and C. E. Wieman, “Measurement of parity nonconservation and an anapole moment in cesium,” Science 275, 1759–1763 (1997).
  12. A. Coc, C. Thibault, F. Touchard, H. T. Duong, P. Juncar, S. Liberman, J. Pinard, J. Lermé, J. L. Vialle, S. Büttgenbach, A. C. Mueller, A. Pesnelle, and The ISOLDE Collaboration, “Hyperfine structures and isotope shifts of 207–213, 220–228Fr; possible evidence of octupolar deformation,” Phys. Lett. B 163, 66–70 (1985).
  13. Z.-T. Lu, C. Bowers, S. J. Freedman, B. K. Fujikawa, J. L. Mortara, S.-Q. Shang, K. P. Coulter, and L. Young, “Laser trapping of short-lived radioactive isotopes,” Phys. Rev. Lett. 72, 3791–3794 (1994).
  14. J. A. Behr, A. Gorelov, T. Swanson, O. Häusser, K. P. Jackson, M. Trinczek, U. Giesen, J. M. D’Auria, R. Hardy, T. Wilson, P. Choboter, F. Leblond, L. Buchmann, M. Dombsky, C. D. P. Levy, G. Roy, B. A. Brown, and J. Dilling, “Magneto-optic trapping of β-decaying 38Km, 37K from an on-line isotope separator,” Phys. Rev. Lett. 79, 375–378 (1997).
  15. S. Gerstenkorn, J. Vergès, and J. Chevillard, Atlas du spectre d’absorption de la molécule d’iode, 11 000–14 000 cm−1 (Laboratoire Aimé-Cotton, C.N.R.S. II, 91405 Orsay, France, 1982).
  16. S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule d’iode, 14 000–15 600 cm−1 (Éditions du C.N.R.S., France, 1978).
  17. S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule d’iode, 14 800–20 000 cm−1 (Laboratoire Aimé-Cotton, C.N.R.S. II, 91405 Orsay, France, 1978).
  18. F. Martin, R. Bacis, S. Churassy, and J. Vergès, “Laser-induced-fluorescence Fourier transform spectrometry of the X0g+ state of I2: extensive analysis of the B0u+→X0g+ fluorescence spectrum of 127I2,” J. Mol. Spectrosc. 116, 71–100 (1986).
  19. H. Kato, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15 000 to 19 000 cm−1 (Japan Society for the Promotion of Science, Tokyo, 2000).
  20. B. Bodermann, H. Knöckel, and E. Tiemann, “Widely usable interpolation formulas for hyperfine splittings in the 127I2 spectrum,” Eur. Phys. J. D 19, 31–44 (2002).
  21. B. Bodermann, “Realization of a tunable high precision frequency standard in the NIR and investigations of the extension of the spectral range using the 127I2-molecule,” Ph.D. dissertation (University of Hannover, Hannover, Germany, 1998).
  22. S. C. Xu, R. van Dierendonck, W. Hogervorst, and W. Ubachs, “A dense grid of reference iodine lines for optical frequency calibration in the range 595–655 nm,” J. Mol. Spectrosc. 201, 256–266 (2000).
  23. I. Velchev, R. van Dierendonck, W. Hogervorst, and W. Ubachs, “A dense grid of reference iodine lines for optical frequency calibration in the range 571–596 nm,” J. Mol. Spectrosc. 187, 21–27 (1998).
  24. J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 46, 544–549 (1999).
  25. F.-L. Hong, J. Ye, L.-S. Ma, S. Picard, Ch. J. Bordé, and J. L. Hall, “Rotation dependence of electric quadrupole hyperfine interaction in the ground state of molecular iodine by high-resolution laser spectroscopy,” J. Opt. Soc. Am. B 18, 379–387 (2001).
  26. F.-L. Hong, Y. Zhang, J. Ishikawa, A. Onae, and H. Matsumoto, “Vibration dependence of the tensor spin-spin and scalar spin-spin hyperfine interactions by precision measurement of hyperfine structures of 127I2 near 532 nm,” J. Opt. Soc. Am. B 19, 946–953 (2002).
  27. R. Holzwarth, A. Yu. Nevsky, M. Zimmermann, Th. Udem, T. W. Hänsch, J. von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, M. N. Skvortsov, and S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001).
  28. S. Gerstenkorn and P. Luc, “Absolute iodine (I2) standards measured by means of Fourier transform spectroscopy,” Rev. Phys. Appl. 14, 791–794 (1979).
  29. J. Tellinghuisen, “The electronic transition moment function for the B0u+(3Π)↔X1Σg+ transition in I2,” J. Chem. Phys. 106, 1305–1308 (1997).
  30. S. Gerstenkorn and P. Luc, Identification des transitions du système (B–X) de la molécule d’iode et facteurs de Franck–Condon, 14 000–15 600 cm−1 (Laboratoire Aimé-Cotton, C.N.R.S. II, 91405 Orsay, France, 1986).
  31. S. M. Yazykova and E. V. Butyrskaya, “Mathematical justification for the r-centroid method in diatomic molecules,” J. Phys. B 13, 3361–3367 (1980).
  32. D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A 26, 12–18 (1982).
  33. C. Bordé, “Spectroscopie d’absorption saturée de diverses molécules au moyen des lasers à gaz carbonique et à protoxyde d’azote,” C. R. Acad. Sci. Ser. B 271, 371–374 (1970).
  34. J. J. Snyder, R. K. Raj, D. Bloch, and M. Ducloy, “High-sensitivity nonlinear spectroscopy using a frequency-offset pump,” Opt. Lett. 5, 163–165 (1980).
  35. A. Yokozeki and J. S. Muenter, “Laser fluorescence state selected and detected molecular beam magnetic resonance in I2,” J. Chem. Phys. 72, 3796–3804 (1980).
  36. Ch. J. Bordé, G. Camy, B. Decomps, and J.-P. Descoubes, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 Å and 5017 Å: I—Main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
  37. T. W. Hänsch, M. D. Levenson, and A. L. Schawlow, “Complete hyperfine structure of a molecular iodine line,” Phys. Rev. Lett. 26, 946–949 (1971).
  38. G. R. Hanes, J. Lapierre, P. R. Bunker, and K. C. Shotton, “Nuclear hyperfine structure in the electronic spectrum of 127I2 by saturated absorption spectroscopy, and comparison with theory,” J. Mol. Spectrosc. 39, 506–515 (1971).
  39. W. H. Flygare and W. D. Gwinn, “Electron distribution in the C–Cl bonds of CH2Cl2 and derivation of matrix elements off-diagonal in J for two quadrupolar nuclei in an asymmetric rotor,” J. Chem. Phys. 36, 787–794 (1962).
  40. S. Gerstenkorn and P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. (Paris) 46, 867–881 (1985).
  41. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math. 11, 431–441 (1963).
  42. S. Fredin-Picard, “On the hyperfine structure of iodine: 1. How to calculate hyperfine transition energies,” Rapport BIPM-90/5 (Bureau International des Poids et Mesures, Sèvres, France, 1990).
  43. S. Picard-Fredin and A. Razet, “On the hyperfine structure of iodine: 2. To calculate hyperfine constants on the basis of experimental data,” Rapport BIPM-91/2 (Bureau International des Poids et Mesures, Sèvres, France, 1991).
  44. M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
  45. L.-S. Ma and J. L. Hall, “Optical heterodyne spectroscopy enhanced by an external optical cavity: toward improved working standards,” IEEE J. Quantum Electron. 26, 2006–2012 (1990).
  46. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
  47. W. Z. Zhao, J. E. Simsarian, L. A. Orozco, and G. D. Sprouse, “A computer-based digital feedback control of frequency drift of multiple lasers,” Rev. Sci. Instrum. 69, 3737–3740 (1998).
  48. G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules (Van Nostrand Reinhold, New York, 1950).
  49. J. Tellinghuisen, “Resolution of the visible-infrared absorption spectrum of I2 into three contributing transitions,” J. Chem. Phys. 58, 2821–2834 (1973).
  50. J. Tellinghuisen, “Intensity factors for the I2 B↔X band system,” J. Quant. Spectrosc. Radiat. Transfer 19, 149–161 (1978).
  51. J. Tellinghuisen, “Transition strengths in the visible-infrared absorption spectrum of I2,” J. Chem. Phys. 76, 4736–4744 (1982).
  52. G. Flory, M. Broyer, J. Vigué, and J. C. Lehmann, “Perturbation de l’iode moléculaire en phase vapeur par la présence de gaz étrangers. Conséquence pour la stabilisation du laser He–Ne,” Rev. Phys. Appl. 12, 901–904 (1977).
  53. G. P. Baxter and M. R. Grose, “The vapor pressure of iodine between 50° and 95°,” J. Am. Chem. Soc. 37, 1061–1072 (1915).
  54. M. Lamrini, R. Bacis, D. Cerny, S. Churassy, P. Crozet, and A. J. Ross, “The electronic transition dipole moment of the B0u+→X0g+ transition in iodine,” J. Chem. Phys. 100, 8780–8783 (1994).
  55. J. N. Forkey, W. R. Lempert, and R. B. Miles, “Corrected and calibrated I2 absorption model at frequency-doubled Nd:YAG laser wavelengths,” Appl. Opt. 36, 6729–6738 (1997).
  56. G. L. Bhale, S. F. Ahmad, and S. Paddi Reddy, “A study of variation of electronic transition moment of the B–X system of I2 from its laser-excited fluorescence spectrum,” J. Phys. B 18, 645–655 (1985).
  57. D. Kirillov, “Intensity of overtones in resonant Raman scattering in I2 vapor,” J. Mol. Spectrosc. 99, 228–230 (1983).
  58. J. B. Koffend, R. Bacis, and R. W. Field, “The electronic transition moment of the B0u+−X1Σg+ system of I2 through gain measurements of an I2 optically pumped laser,” J. Chem. Phys. 70, 2366–2372 (1979).
  59. A. Chutjian and T. C. James, “Intensity measurements in the B3Π0+u−X1Σ0+g system of I2,” J. Chem. Phys. 51, 1242–1249 (1969).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited