OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 6 — Jun. 1, 2004
  • pp: 1127–1136

Resonant double-grating waveguide structures as inverted Fabry–Perot interferometers

Christoph Kappel, André Selle, Mark Andreas Bader, and Gerd Marowsky  »View Author Affiliations

JOSA B, Vol. 21, Issue 6, pp. 1127-1136 (2004)

View Full Text Article

Acrobat PDF (205 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A multiple-interference model to describe double-grating waveguide structures is presented. It is based on the multiple-interference model for single-grating waveguide structures previously established by Friesem and co-workers [J. Opt. Soc. Am. A 14, 2985 (1997)]. We show that double grating waveguide structures, in particular, as well as the usual single-grating waveguide structures can be completely described by our model and that explicit dependences of the resonant conditions on the wavelength, the angle, and the polarization of the incident light as well as on system parameters such as refractive indices, layer thickness, grating depths, and grating period can be given. This multiple-interference model elucidates the resonance behavior of single- and double-grating waveguide structures and predicts reflection and transmission resonance bandwidths in analogy to those of the classic Fabry–Perot interferometer. One can explain and understand the periodicity of resonances by interpreting grating waveguide structures as inverted Fabry–Perot interferometers. Comparison with exact numerical calculations and verification by experimental investigations prove the model to be a powerful tool for design purposes and to provide a deep understanding of the observed resonance phenomena.

© 2004 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(230.7370) Optical devices : Waveguides

Christoph Kappel, André Selle, Mark Andreas Bader, and Gerd Marowsky, "Resonant double-grating waveguide structures as inverted Fabry–Perot interferometers," J. Opt. Soc. Am. B 21, 1127-1136 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).
  2. C. H. Palmer, “Parallel diffraction grating anomalies,” J. Opt. Soc. Am. 42, 269–276 (1952).
  3. A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies,” Appl. Opt. 4, 1275–1297 (1965).
  4. M. Nevière, “The homogeneous problem,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), Chap. 5.
  5. V. A. Sychugov and A. V. Tishchenko, “Propagation and conversion of light waves in corrugated waveguide structures,” Sov. J. Quantum Electron. 12, 923–926 (1982).
  6. G. A. Golubenko, A. S. Svakhin, V. A. Sychugiov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886–887 (1985).
  7. E. Popov, L. Mashev, and D. Maystre, “Theoretical study of anomalies of coated dielectric gratings,” Opt. Acta 32, 607–629 (1986).
  8. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 7, 1470–1474 (1990).
  9. M. Nevière, E. Popov, and R. Reinisch, “Electromagnetic resonances in linear and nonlinear optics: phenomenological study of grating behaviour through the poles and zeros of the scattering operator,” J. Opt. Soc. Am. A 12, 513–523 (1995).
  10. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
  11. S. M. Norton, T. Erdogan, and G. M. Morris, “Coupled-mode theory of resonant-grating filters,” J. Opt. Soc. Am. A 14, 629–639 (1996).
  12. T. Tamir and S. Zhang, “Resonant scattering by multilayered dielectric gratings,” J. Opt. Soc. Am. A 14, 1607–1616 (1997).
  13. R. R. Boye, R. W. Ziolkowski, and R. K. Kostuk, “Resonant waveguide-grating switching device with nonlinear optical material,” Appl. Opt. 38, 5181–5185 (1999).
  14. A. Sharon, D. Rosenblatt, A. A. Friesem, H. G. Weber, H. Engel, and R. Steingrueber, “Light modulation with resonant grating-waveguide structures,” Opt. Lett. 21, 1564–1566 (1996).
  15. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
  16. S. Tibuleac and R. Magnusson, “Reflection and transmission guided-mode resonance filters,” J. Opt. Soc. Am. A 14, 1617–1626 (1997).
  17. S. M. Norton, G. M. Morris, and T. Erdogan, “Experimental investigation of resonant-grating filter line shapes in comparison with theoretical models,” J. Opt. Soc. Am. A 15, 464–472 (1998).
  18. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Normal-incidence guided-mode resonant grating filters: design and experimental demonstration,” Opt. Lett. 23, 700–702 (1998).
  19. F. Lemarchand, A. Sentenac, and H. Giovannini, “Increasing the angular tolerance of resonant grating filters with doubly periodic structures,” Opt. Lett. 23, 1149–1151 (1998).
  20. A. Mizutani, H. Kikuta, K. Iwata, and H. Toyota, “Guided-mode resonant grating filters with an antireflection structured surface,” J. Opt. Soc. Am. A 19, 1346–1351 (2002).
  21. S. Pereira, J. E. Sipe, M. A. Bader, S. Soria, and G. Marowsky, “Loss-tolerant narrow-band reflector in the UV using a grating-waveguide structure,” Appl. Phys. B 75, 1–6 (2002).
  22. D. Neuschäfer, W. Budach, C. Wanke, and S.-D. Chibout, “Evanscent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays,” Biosens. Bioelectron. 18, 489–497 (2003).
  23. S. Peng and G. M. Morris, “Resonant scattering from two-dimensional gratings,” J. Opt. Soc. Am. A 13, 993–1005 (1996).
  24. A. Mizutani, H. Kikuta, K. Nakajima, and K. Iwata, “Nonpolarizing guided-mode resonant grating filter for oblique incidence,” J. Opt. Soc. Am. A 18, 1261–1266 (2001).
  25. L. Li, “Analysis of planar waveguide grating coupler with double surface corrugations of identical period,” Opt. Commun. 114, 406–412 (1995).
  26. O. Parriaux, V. A. Sychugov, and A. Tishchenko, “Coupling gratings as waveguide functional elements,” Pure Appl. Opt. 5, 453–469 (1996).
  27. A. Sharon, S. Glasberg, D. Rosenblatt, and A. A. Friesem, “Metal-based resonant grating waveguide structures,” J. Opt. Soc. Am. A 14, 588–595 (1997).
  28. A. Sharon, D. Rosenblatt, and A. A. Friesem, “Resonant grating-waveguide structures for visible and near-infrared radiation,” J. Opt. Soc. Am. A 14, 2985–2993 (1997).
  29. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1999).
  30. S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, “Spectral shifts and line-shape symmetries in the resonant response of grating waveguide structures,” Opt. Commun. 145, 291–299 (1998).
  31. D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Design considerations for narrow-band dielectric resonant grating reflection filters of finite length,” J. Opt. Soc. Am. A 17, 1241–1249 (2000).
  32. D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Normally incident resonant grating reflection filters for efficient narrow-band spectral filtering of finite beams,” J. Opt. Soc. Am. A 18, 2109–2120 (2001).
  33. D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Flat-top narrow-band spectral response obtained from cascaded resonant grating reflection filters,” Appl. Opt. 41, 1241–1245 (2002).
  34. D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Interference approach applied to dual-grating dielectric resonant grating reflection filters,” Opt. Lett. 26, 1749–1751 (2001).
  35. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited