OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 6 — Jun. 1, 2004
  • pp: 1137–1145

Characterization of quasi-phase-matching gratings in quadratic media through double-pass second-harmonic power measurements

Steffen Kjær Johansen and Pascal Baldi  »View Author Affiliations


JOSA B, Vol. 21, Issue 6, pp. 1137-1145 (2004)
http://dx.doi.org/10.1364/JOSAB.21.001137


View Full Text Article

Enhanced HTML    Acrobat PDF (182 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new scheme for nondestructive characterization of quasi-phase-matching grating structures and temperature gradients through inverse Fourier theory using second-harmonic-generation experiments is proposed. By inserting a mirror to reflect the signals back through the sample, we show how it is possible to retrieve the relevant information by measuring only the generated second-harmonic power, avoiding more complicated phase measurements. The potential of the scheme is emphasized through theoretical and numerical investigations in the case of periodically poled lithium niobate bulk crystals.

© 2004 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(220.0220) Optical design and fabrication : Optical design and fabrication

Citation
Steffen Kjær Johansen and Pascal Baldi, "Characterization of quasi-phase-matching gratings in quadratic media through double-pass second-harmonic power measurements," J. Opt. Soc. Am. B 21, 1137-1145 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-6-1137


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. L. Byer, “Quasi-phase matched nonlinear interactions and devices,” J. Nonlinear Opt. Phys. 6, 549–592 (1997). [CrossRef]
  2. M. M. Fejer, in Beam Shaping and Control with Nonlinear Optics, F. Kajzar and R. Reinisch, eds. (Plenum, New York, 1998), pp. 375–406.
  3. J. Webjörn, V. Pruneri, P. Russel, J. R. M. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation with lithium niobate, electrically poled via liquid electrodes,” Electron. Lett. 30, 894–895 (1994). [CrossRef]
  4. K. El Hadi, M. Sundheimer, P. Aschieri, P. Baldi, M. P. De Micheli, and D. B. Ostrowsky, “Quasi-phase-matched parametric interactions in proton-exchanged lithium niobate waveguides,” J. Opt. Soc. Am. B 14, 3197–3203 (1997). [CrossRef]
  5. P. Baldi, M. P. De Micheli, K. E. Hadi, S. Nouh, A. C. Cino, P. Aschieri, and D. B. Ostrowsky, “Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters,” Opt. Eng. 37, 1193–1202 (1998). [CrossRef]
  6. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992). [CrossRef]
  7. M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou, and M. M. Fejer, “Engineerable compression of ultrashort pulses by use of second-harmonic generation in chirped-period-poled lithium niobate,” Opt. Lett. 22, 1341–1343 (1997). [CrossRef]
  8. K. Mizuuchi and K. Yamamoto, “Waveguide second-harmonic generation device with broadened flat quasi-phase-matching response by use of a grating structure with located phase shifts,” Opt. Lett. 23, 1880–1882 (1998). [CrossRef]
  9. S. Zhu, Y. Zhu, Y. Qin, H. Wang, C. Ge, and N. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997). [CrossRef]
  10. P. Baldi, C. G. Treviño-Palacios, G. I. Stegeman, M. P. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Simultaneous generation of red, green and blue light in room temperature periodically poled lithium niobate waveguides using single source,” Electron. Lett. 31, 1350–1351 (1995). [CrossRef]
  11. M. Cha, “Cascaded phase shift and intensity modulation in aperiodic quasi-phase-matched gratings,” Opt. Lett. 23, 250–252 (1998). [CrossRef]
  12. K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79, 314–316 (2001). [CrossRef]
  13. K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequencymixing in APE waveguides in PPLN,” IEEE Photon. Technol. Lett. 12, 654–656 (2000). [CrossRef]
  14. L. Torner, C. B. Clausen, and M. M. Fejer, “Adiabatic shaping of quadratic solitons,” Opt. Lett. 23, 903–905 (1998). [CrossRef]
  15. S. Carrasco, J. P. Torres, L. Torner, and R. Schiek, “Engineerable generation of quadratic solitons in synthetic phase matching,” Opt. Lett. 25, 1273–1275 (2000). [CrossRef]
  16. S. K. Johansen, S. Carrasco, L. Torner, and O. Bang, “Engineering of spatial solitons in two-period QPM structures,” Opt. Commun. 203, 393–402 (2002). [CrossRef]
  17. G. Imeshev, M. Proctor, and M. M. Fejer, “Lateral patterning of nonlinear frequency conversion with transversely varying quasi-phase-matching gratings,” Opt. Lett. 23, 673–675 (1998). [CrossRef]
  18. P. E. Powers, T. J. Kulp, and S. E. Bisson, “Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,” Opt. Lett. 23, 159–162 (1998). [CrossRef]
  19. C. B. Clausen and L. Torner, “Self-bouncing of quadratic solitons,” Phys. Rev. Lett. 81, 790–793 (1998). [CrossRef]
  20. C. B. Clausen and L. Torner, “Spatial switching of quadratic solitons in engineered quasi-phase-matched structures,” Opt. Lett. 24, 7–9 (1999). [CrossRef]
  21. L. Chanvillard, P. Aschiéri, P. Baldi, D. B. Ostrowsky, M. de Micheli, L. Huang, and D. J. Bamford, “Soft proton exchange on periodically poled LiNbO3: a simple waveguide fabrication process for highly efficient nonlinear interactions,” Appl. Phys. Lett. 76, 1089–1091 (2000). [CrossRef]
  22. R. Schiek, M. L. Sundheimer, D. Y. Kim, Y. Baek, G. I. Stegeman, H. Seibert, and W. Sohler, “Direct measurement of cascaded nonlinearity in lithium niobate channel waveguides,” Opt. Lett. 19, 1949–1951 (1994). [CrossRef] [PubMed]
  23. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997). [CrossRef]
  24. For extraordinary polarized electric fields leading to the use of d33: a1=5.35583, a2=0.100473, a3=0.20692, a4= 100, a5=11.34927, a6=1.5334×10−2, b1=4.629× 10−7, b2=3.862×10−8, b3=−0.89×10−8, and b4= 2.657×10−5.
  25. R. Schiek, H. Fang, and C. G. Treviño-Palacios, “Measurement of the non-uniformity of the wave-vector mismatch in waveguides for second-harmonic generation,” in Digest on Topical Meeting on Nonlinear Guided Waves and Their Applications (Optical Society of America, Washington D.C., 1998), pp. 256–258.
  26. J. A. Armstrong, N. Bloembergen, and P. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962). [CrossRef]
  27. P. St. J. Russel, “Theoretical study of parametric frequency and wavefront conversion in nonlinear holograms,” IEEE J. Quantum Electron. 27, 830–835 (1991). [CrossRef]
  28. Y. J. Ding, “Second-harmonic generation based on quasi-phase matching: a novel configuration,” Opt. Lett. 21, 1445–1447 (1996). [CrossRef] [PubMed]
  29. X. Mu, I. B. Zotova, Y. J. Ding, and W. P. Risk, “Backward second-harmonic generation in submicron-period ion-exchanged KTiOPO4 waveguide,” Opt. Commun. 181, 153–159 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited