OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 6 — Jun. 1, 2004
  • pp: 1161–1169

Large-mode-area holey fibers with a few air channels in cladding: modeling and experimental investigation of the modal properties

Vladimir P. Minkovich, Alexander V. Kir'yanov, Alexander B. Sotsky, and Ludmila I. Sotskaya  »View Author Affiliations


JOSA B, Vol. 21, Issue 6, pp. 1161-1169 (2004)
http://dx.doi.org/10.1364/JOSAB.21.001161


View Full Text Article

Acrobat PDF (327 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Large-mode-area (LMA) silica holey fibers (HFs) are investigated both theoretically and experimentally with special attention paid to the effect of a limited number of air channels in the cladding on the main modal characteristics of the fibers. We applied the method of integral equations to model the LMA HF modes, and the results of our calculations are compared with the experimental data obtained for the so-called large-hole–large-spacing silica HFs. The effect of the relative holes’ diameter in the case of a few layers in the cladding on the LMA HF properties is addressed in detail because this parameter basically determines the limits of single-mode waveguide operation and transmission loss of the fabricated LMA HFs.

© 2004 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2400) Fiber optics and optical communications : Fiber properties
(060.2430) Fiber optics and optical communications : Fibers, single-mode

Citation
Vladimir P. Minkovich, Alexander V. Kir'yanov, Alexander B. Sotsky, and Ludmila I. Sotskaya, "Large-mode-area holey fibers with a few air channels in cladding: modeling and experimental investigation of the modal properties," J. Opt. Soc. Am. B 21, 1161-1169 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-6-1161


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. C. Baggett, T. M. Monro, K. Furusawa, and D. J. Richardson, “Comparative study of large-mode holey and conventional fibers,” Opt. Lett. 26, 1045–1047 (2001).
  2. W. J. Wadsworth, R. M. Persival, G. Bouwmans, J. C. Knight, and P. St. J. Russell, “High power air-clad photonic crystal fiber laser,” Opt. Exp. 11, 48–53 (2003), http://www.opticsexpress.org.
  3. N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, A. Petersson, and H. R. Simonsen, “Improved large-mode-area endlessly single-mode photonic crystal fibers,” Opt. Lett. 28, 393–395 (2003).
  4. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: an efficient modal model,” J. Lightwave Technol. 19, 1093–1102 (1999).
  5. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Localized function method for modeling defect modes in 2-D photonic crystal,” J. Lightwave Technol. 11, 2078–2081 (1999).
  6. A. Ferrando, E. Silvestre, J. J. Miret, P. Andres, and M. V. Andres, “Vector description of higher-order modes in photonic crystal fibers,” J. Opt. Soc. Am. A 17, 1333–1340 (2000).
  7. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and D. J. Bennett, “Modeling large air fraction holey optical fibers,” J. Lightwave Technol. 18, 50–56 (2000).
  8. Z. Zhu and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Exp. 10, 853–864 (2002), http://www.opticsexpress.org.
  9. M. Koshida and K. Saitoh, “Structural dependence of effec-tive area and mode field diameter for holey fibers,” Opt. Exp., 11, 1746–1756 (2003), http://www.opticsexpress.org.
  10. M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and A. P. Nicorovici, “Microstructured polymer optical fiber,” Opt. Exp. 9, 319–327 (2001), http://www.opticsexpress.org.
  11. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
  12. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. S. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
  13. A. B. Sotsky and L. I. Sotskaya, “The properties of modes of microstructures optical fibers in the vicinity of critical conditions,” Tech. Phys. Lett. 29, 764–767 (2003).
  14. A. B. Sotsky and L. I. Sotskya, “Leaky modes in optical fibers with transverse anisotropy,” Opt. Spectrosc. 88, 415–422 (2000).
  15. C. A. Korn and T. M. Korn, Mathematical Handbook (McGraw-Hill, New York, 1968), p. 831.
  16. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1968), p. 710.
  17. V. I. Krylov, V. V. Bobkov, and P. I. Monasturnyi, Methods of Computing (Nauka, Moscow, 1977), p. 399 (in Russian).
  18. A. B. Sotsky, “To computing complex zeros of transcendental equations,” Dokl. NASB 45, 19–22 (2001) (in Russian).
  19. T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett. 26, 1660–1662 (2001).
  20. M. J. Steel, T. P. White, C. M. de Sterke, R. C. McPhedran, and L. C. Botten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett. 26, 488–490 (2001).
  21. A. B. Sotsky and L. I. Sotskaya, “Modes of capillary optical fibers,” Opt. Commun. 230, 67–79 (2004).
  22. N. A. Mortensen, “Effective area of photonic crystal fibers,” Opt. Exp. 10, 341–348 (2002), http://www.opticsexpress.org.
  23. B. T. Kuhlmey, R. C. McPhedran, and C. M. De Sterke, “Modal cutoff in microstructured optical fiber,” Opt. Lett. 27, 1684–1686 (2002).
  24. N. A. Mortensen and J. R. Folkenberg, “Low-loss criterion and effective area considerations for photonic crystal fibers,” J. Opt. A. Pure Appl. Opt. 5, 163–167 (2003).
  25. M. D. Nielsen, N. A. Mortensen, and J. R. Folkeberg, “Reduced microdeformation attenuation spectra in large-mode-area photonic crystal fibers for visible applications,” Opt. Lett. 28, 1645–1647 (2003).
  26. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
  27. B. T. Kuhlmey, R. C. McPhedran, C. M. de Sterke, D. A. Robinson, G. Renversez, and D. Mayster, “Microstructured optical fibers: where’s the edge?,” Opt. Exp. 10, 1285–1290 (2002), http://www.opticsexpress.org.
  28. V. V. Shevchenko, “Spectral expansion eigen and attached functions of an non-self-adjoint problem on an entire axis,” Diffirencialnye Uravnenia 15, 2004–2020 (1979) (in Russian).
  29. M. J. Adams, An Introduction to Optical Waveguides (Wiley, New York, 1981), p. 512.
  30. M. D. Nielsen, J. R. Folkenberg, and N. A. Mortensen, “Single-mode photonic crystal fiber with an effective area of 600 μm2 and low bending loss,” Electron. Lett. 39, 1802–1803 (2003), www:arxiv.org./abs/physics/0311065.
  31. A. D. Fitt, K. Furusava, T. M. Monro, and C. P. Please, “Modeling the fabrication of hollow fibers: capillary drawing,” J. Lightwave Technol. 17, 1093–1102 (1999).
  32. V. P. Minkovich, A. V. Kir’yanov, and S. Calixto, “Large-hole-large-spacing holey fibers with a few air holes—fabrication and measurements of light-delivering properties and optical losses,” Laser Phys. 14, 000–000 (2004).
  33. N. A. Mortensen and J. R. Folkenberg, “Near-field to far-field transition of photonic crystal fibers: symmetries and interference phenomena,” Opt. Exp. 10, 475–481 (2002), http://www.opticsexpress.org.
  34. M. D. Nielsen, N. A. Mortensen, J. R. Folkenberg, and A. Bjarklev, “Mode-field radius of photonic crystal fibers expressed by the V parameter,” Opt. Lett. 28, 2309–2311 (2003).
  35. M. D. Nielsen and N. A. Mortensen, “Photonic crystal fiber design based on the V-parameter,” Opt. Express 11, 2762–2768 (2003), http://www.opticsexpress.org.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited