OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 6 — Jun. 1, 2004
  • pp: 1216–1224

Vector theory of four-wave mixing: polarization effects in fiber-optic parametric amplifiers

Qiang Lin and Govind P. Agrawal  »View Author Affiliations


JOSA B, Vol. 21, Issue 6, pp. 1216-1224 (2004)
http://dx.doi.org/10.1364/JOSAB.21.001216


View Full Text Article

Acrobat PDF (201 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a vector theory of four-wave mixing and use it to study the polarization-dependent nature of four-wave mixing and the conditions under which the gain of a dual-pump fiber-optic parametric amplifier becomes polarization independent. We find that in the absence of self- and cross-phase modulations, any pair of orthogonally polarized pumps can provide polarization-independent gain, but this gain is minimum for linearly polarized pumps and becomes maximum when the two pumps are circularly polarized. Self-and cross-phase modulations induce nonlinear polarization rotation and change the orthogonality between the two pump polarizations. We discuss the general case of elliptically polarized cases and show that only linearly and circularly polarized pumps can maintain their orthogonality along the fiber. A stability analysis shows that the case of linearly polarized pumps is more stable than the circular one against small deviations from the ideal case but that the latter provides much more amplification.

© 2004 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(260.5430) Physical optics : Polarization

Citation
Qiang Lin and Govind P. Agrawal, "Vector theory of four-wave mixing: polarization effects in fiber-optic parametric amplifiers," J. Opt. Soc. Am. B 21, 1216-1224 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-6-1216


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
  2. M. N. Islam and Ö. Boyraz, “Fiber parametric amplifiers for wavelength band conversion,” IEEE J. Sel. Top. Quantum Electron. 8, 527–537 (2002).
  3. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif. 2001).
  4. C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE J. Sel. Top. Quantum Electron. 8, 538–547 (2002).
  5. S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, “Continuous-wave parametric gain synthesis using nondegenerate pump four-wave mixing,” IEEE Photon. Technol. Lett. 14, 1406–1408 (2002).
  6. S. Radic and C. J. McKinstrie, “Two-pump fiber parametric amplifiers,” Opt. Fiber Technol. 9, 7–23 (2003).
  7. S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, Q. Lin, and G. P. Agrawal, “Record performance of parametric amplifier constructed with highly nonlinear fiber,” Electron. Lett. 39, 838–840 (2003).
  8. T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photon. Technol. Lett. 5, 947–949 (1993).
  9. K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, “Polarization-independent one-pump fiber-optical parametric amplifier,” IEEE Photon. Technol. Lett. 14, 1506–1508 (2002).
  10. K. Inoue, “Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies,” J. Lightwave Technol. 12, 1916–1920 (1994).
  11. K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, “Polarization-independent two-pump fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 14, 911–913 (2002).
  12. M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, “Fiber optical parametric amplifiers with circularly-polarized pumps,” Electron. Lett. 39, 350–351 (2003).
  13. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, San Diego, Calif. 2003).
  14. J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97, 4541–4550 (2000).
  15. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, New York, 1995), Chap. 10.
  16. S. Huard, Polarization of Light (Wiley, New York, 1997).
  17. A. V. Mikhailov and S. Wabnitz, “Polarization dynamics of counterpropagating beams in optical fibers,” Opt. Lett. 15, 1055–1057 (1990).
  18. S. Wabnitz and B. Daino, “Polarization domains and instabilities in nonlinear optical fibers,” Phys. Rev. A 182, 289–293 (1993).
  19. Q. Lin and G. P. Agrawal, “Effects of polarization-mode dispersion on fiber-based parametric amplification and wavelength conversion,” Opt. Lett. 29, 1114–1116 (2004).
  20. F. Yaman, Q. Lin, and G. P. Agrawal, “Effects of polarization-mode dispersion in dual-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 16, 431–433 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited