OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 6 — Jun. 1, 2004
  • pp: 1234–1240

Nonlinear-absorbing fiber array for large-dynamic-range optical limiting application against intense short laser pulses

Iam Choon Khoo, Andres Diaz, and Jianwu Ding  »View Author Affiliations


JOSA B, Vol. 21, Issue 6, pp. 1234-1240 (2004)
http://dx.doi.org/10.1364/JOSAB.21.001234


View Full Text Article

Enhanced HTML    Acrobat PDF (382 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A complete quantitative description of a nonlinear fiber array for optical limiting application against laser pulses in the picosecond–nanosecond regime is presented. We discuss the dynamics of the molecular photonic processes accompanying the propagation of a laser pulse through the fiber core made of materials that possess reverse saturable absorption, two-photon absorption (TPA), and excited-state absorption (ESA), and we detail the optical limiting effectiveness and limitations of these nonlinear absorption processes individually and in concert. In particular, we demonstrate the importance of excited-state population recycling in extending the dynamic range of the limiting action. Experimental results obtained from a particular fiber core material that possesses TPA and ESA show good agreement with theoretical expectations and demonstrate the optical limiting capability of such a nonlinear fiber array.

© 2004 Optical Society of America

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

Citation
Iam Choon Khoo, Andres Diaz, and Jianwu Ding, "Nonlinear-absorbing fiber array for large-dynamic-range optical limiting application against intense short laser pulses," J. Opt. Soc. Am. B 21, 1234-1240 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-6-1234


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. ANSI Standard Z136.1 for the Safe Use of Lasers (American National Standards Institute, Inc., New York, 2000).
  2. L. W. Tutt and T. F. Boggess, “Review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993). [CrossRef]
  3. C. W. Spangler, “Recent development in the design of organic materials for optical power limiting,” J. Mater. Chem. 9, 2013–2020 (1999). [CrossRef]
  4. M. Brunel, F. Chaput, S. A. Vinogradov, B. Campagne, M. Canva, J. P. Boilot, and A. Brun, “Reverse saturable absorption in palladium and zinc tetraphenyltetrabenzoporphyrin doped xerogels,” Chem. Phys. 218, 301–307 (1997). [CrossRef]
  5. R. L. Sutherland, M. C. Brant, D. M. Brandelik, P. A. Fleitz, D. G. McLean, and T. Pottenger, “Nonlinear absorption study of a C60-toluene solution,” Opt. Lett. 18, 858–860 (1993). [CrossRef]
  6. J. W. Perry, K. Mansour, S. R. Marder, K. J. Perry, D. Alvarez, and I. Choong, “Enhanced reverse saturable absorption and optical limiting in heavy-atom-substituted phthalocyanines,” Opt. Lett. 19, 625–627 (1994). [CrossRef] [PubMed]
  7. T. Xia, D. J. Hagan, A. Dogariu, A. A. Said, and E. W. Van Stryland, “Optimization of optical limiting devices based on excited-state absorption,” Appl. Opt. 36, 4110–4122 (1997). [CrossRef] [PubMed]
  8. P. A. Miles, “Bottleneck optical limiters—the optimal use of excited-state absorbers,” Appl. Opt. 33, 6965–6979 (1994). [CrossRef] [PubMed]
  9. G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, and A. G. Dillard, “Two-photon absorption and optical-limiting properties of novel organic compounds,” Opt. Lett. 20, 435–437 (1995). [CrossRef] [PubMed]
  10. J. E. Ehrlich, X. L. Wu, I. Y. S. Lee, Z. Y. Hu, H. Rockel, S. R. Marder, and J. W. Perry, “Two-photon absorption and broadband optical limiting with bis-donor stilbenes,” Opt. Lett. 22, 1843–1845 (1997). [CrossRef]
  11. I. C. Khoo, P. H. Chen, M. V. Wood, and M.-Y. Shih, “Molecular photonics of a highly nonlinear organic fiber core liquid for picosecond-nanosecond optical limiting application,” Chem. Phys. 245, 517–531 (1999). [CrossRef]
  12. I. C. Khoo, “Liquid crystal array for optical limiting of laser pulses and for eye/sensor protection,” U.S. Patent 5, 589, 101 (December 31, 1996).
  13. I. C. Khoo, M. V. Wood, B. D. Guenther, M.-Y. Shih, and P. H. Chen, “Nonlinear absorption and optical limiting of laser pulses in a liquid-cored fiber array,” J. Opt. Soc. Am. B 15, 1533–1540 (1998). [CrossRef]
  14. I.-C. Khoo, A. Diaz, M. V. Wood, and P. H. Chen, “Passive optical limiting of picosecond-nanosecond laser pulses using highly nonlinear organic liquid cored fiber array,” IEEE J. Sel. Top. Quantum Electron. 7, 760–768 (2001). [CrossRef]
  15. I. C. Khoo, J. Ding, A. Diaz, Y. Zhang, and K. Chen, “Recent studies of optical limiting, image processing and near-infrared nonlinear optics with nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 375, 33–44 (2002). [CrossRef]
  16. G. P. Agarwal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).
  17. See, for example, K. M. Nashold and D. P. Walter, “Investigations of optical limiting mechanisms in carbon particle suspensions and fullerene solutions,” J. Opt. Soc. Am. B 12, 1228–1237 (1995). [CrossRef]
  18. J. Barroso, A. Costela, I. Garcia-Moreno, and J. L. Saiz, “Wavelength dependence of the nonlinear absorption of C-60- and C-70-toluene solutions,” J. Phys. Chem. A 102, 2527–2532 (1998). [CrossRef]
  19. D. G. McLean, R. L. Sutherland, M. C. Brant, D. M. Brandelik, P. A. Fleitz, and T. Pottenger, “Nonlinear absorption study of a C60-toluene solution,” Opt. Lett. 18, 858–860 (1993), and references therein. [CrossRef]
  20. R. C. Hoffman, K. A. Stetyick, R. S. Potember, and D. G. McLean, “Reverse saturable absorbers—indanthrone and its derivatives,” J. Opt. Soc. Am. B 6, 772–777 (1989). [CrossRef]
  21. T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Vanstryland, J. W. Perry, and D. R. Coulter, “Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines,” Appl. Phys. B 54, 46–51 (1992). [CrossRef]
  22. T. Ohno, S. Kato, A. Yamada, and T. Tanno, “Electron transfer reactions of the photoexcited triplet state of Chloroaluminum phthalocyanine with aromatic amines, benzoquinones, and coordination of compounds of iron (II) and iron (III),” J. Phys. Chem. 87, 775–781 (1983). [CrossRef]
  23. P. A. Firey, W. E. Ford, J. R. Sounik, M. E. Kenney, and M. A. J. Rodgers, “Silicon naphthalocyanine triplet-state and oxygen—a reversible energy-transfer reaction,” J. Am. Chem. Soc. 110, 7626–7630 (1988). [CrossRef]
  24. G. S. He, T.-C. Lin, P. N. Prasad, C.-C. Cho, and L.-J. Yu, “Optical power limiting and stabilization using a two-photon absorbing neat liquid crystal in isotropic phase,” Appl. Phys. Lett. 82, 4717–4719 (2003). [CrossRef]
  25. C. Martineau, R. Anemian, C. Andraud, Y. Morel, O. Stephan, I. Wang, M. Bouriau, and P. L. Baldeck, “Two-photon absorption induced applications in the visible range: optical limiting and polymerization,” in the Proceedings of the 2002 Fourth International Conference on Transparent Optical Networks (Institute of Electrical and Electronics Engineers, New York, 2002).
  26. L. Hong, H. Zhen-Li, and W. He-Zhou, “Two-photon absorption properties and applications of organic materials,” Wuli, 32, 19–26 (2003).
  27. G. L. Wood, M. J. Miller, and A. G. Mott, “Investigation of tetrabenzporphyrin by the Z-scan technique,” Opt. Lett. 20, 973–975 (1995). [CrossRef] [PubMed]
  28. M. Sheikbahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Vanstryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron 26, 760–769 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited