OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 6 — Jun. 1, 2004
  • pp: 1255–1261

Enhanced photorefractive two-beam coupling in low-Tg polymeric materials with a new device structure

Takafumi Sassa, Tsuyoshi Muto, and Tatsuo Wada  »View Author Affiliations

JOSA B, Vol. 21, Issue 6, pp. 1255-1261 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (246 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Large two-beam coupling gain with a low driving voltage and a small grating spacing was observed by use of a novel device structure in a photorefractive polymer with a low glass-transition temperature (Tg). A net gain (Γ-α)L close to 1 was observed for an external electric field of ∼40 V/µm and a grating spacing of 0.42 µm. The enhanced coupling strength was the result of optimized parameters and improved, effective electro-optical coefficient, phase shift, space-charge field, and effective interaction length compared with those of a conventional device structure. Moreover, mechanism for this enhancement of coupling strength was found to be applicable to typical efficient low-Tg polymeric materials.

© 2004 Optical Society of America

OCIS Codes
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(190.7070) Nonlinear optics : Two-wave mixing

Takafumi Sassa, Tsuyoshi Muto, and Tatsuo Wada, "Enhanced photorefractive two-beam coupling in low-Tg polymeric materials with a new device structure," J. Opt. Soc. Am. B 21, 1255-1261 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Montemezzani and P. Gunter, “Inorganic and organic photorefractive materials,” in Notions and Perspectives of Nonlinear Optics, O. Keller, ed. (World Scientific, Singapore, 1996).
  2. B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature 383, 58–60 (1996). [CrossRef]
  3. B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandophon, Y. J. Yao, J. F. Wang, H. Rockel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–56 (1998). [CrossRef] [PubMed]
  4. For example, L. Wang, Y. Zhang, T. Wada, and H. Sasabe, “Photorefractive effect in a photoconductive electro-optic carbazole trimer,” Appl. Phys. Lett. 69, 728–730 (1996). [CrossRef]
  5. For example, R. Wortmann, C. Glania, P. Kramer, K. Lukaszuk, R. Matschiner, R. J. Twieg, and F. You, “Highlytransparent and birefringent chromophores for organic photorefractive materials,” Chem. Phys. 245, 107–120 (1999). [CrossRef]
  6. W. E. Moerner and S. M. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94, 127–155 (1994). [CrossRef]
  7. W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585–623 (1997). [CrossRef]
  8. M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, and W. E. Moerner, “Photorefractive properties of poly(N-vinyl carbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999). [CrossRef]
  9. A. Grunnet-Jepson, C. L. Thompson, and W. E. Moerner, “Spontaneous oscillation and self-pumped phase conjugation in a photorefractive polymer optical amplifier,” Science 277, 549–552 (1997). [CrossRef]
  10. D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, “High-speed photorefractive polymer composite,” Appl. Phys. Lett. 73, 1490–1492 (1998). [CrossRef]
  11. W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 11, 320–330 (1994). [CrossRef]
  12. A. Grunnet-Jepsen, C. L. Thompson, and W. E. Moerner, “Systematics of two-wave mixing in a photorefractive polymer,” J. Opt. Soc. Am. B 15, 905–913 (1998). [CrossRef]
  13. D. Fluck, S. Brulisauer, and P. Gunter, “Photorefractive two-wave mixing with focused Gaussian beams,” Opt. Commun. 115, 626–636 (1995). [CrossRef]
  14. H. Moon, J. Hwang, N. Kim, and S. Y. Park, “Synthesis and properties of photorefractive polymers containing Indole-based multifunctional chromophores as a pendant group,” Macromolecules 33, 5116–5123(2000). [CrossRef]
  15. C. A. Walsh and W. E. Moerner, “Two-beam coupling measurements of grating phase in a photorefractive polymer,” J. Opt. Soc. Am. B 9, 1642–1647 (1992). [CrossRef]
  16. A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, and W. E. Moerner, “Amplified scattering in a high-gain photorefractive polymer,” J. Opt. Soc. Am. B 15, 901–904 (1998). [CrossRef]
  17. K. Meerholz, R. Bittner, and Y. D. Nardin, “Field asymmetry of the dynamic gain coefficient in organic photorefractive devices,” Opt. Commun. 150, 205–209 (1998). [CrossRef]
  18. D. Kokron, S. M. Evanko, and L. M. Hayden, “Launching of guided waves in a photorefractive polymer by two-beam coupling,” Opt. Lett. 20, 2297–2299 (1995). [CrossRef] [PubMed]
  19. A. Grunnet-Jepsen, C. L. Thompson, and W. E. Moerner, “Measurement of the spatial phase shift in high-gain photorefractive materials,” Opt. Lett. 22, 874–876 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited