OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 7 — Jul. 1, 2004
  • pp: 1273–1279

Noise, detectors, and submillimeter–terahertz system performance in nonambient environments

Frank C. De Lucia  »View Author Affiliations

JOSA B, Vol. 21, Issue 7, pp. 1273-1279 (2004)

View Full Text Article

Acrobat PDF (399 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Because many sources of radiation in the submillimeter–terahertz have relatively low power, the development of sensitive detectors has been important. Equally important is the selection of detector and source methodologies appropriate for specific scientific or technological applications. Discussed is the effect of Bose–Einstein statistics, blackbody mode structure, and detector optical and electronic bandwidths to develop closed-form expressions for the contributions from experimental backgrounds to overall system noise. The results obtained allay the oft-expressed concerns that many important experiments, especially those conducted at elevated temperatures or in harsh environments such as plasmas, are either difficult or not possible with high-resolution cw systems. To the contrary, in the large majority of cases this excess background noise is not observable. Experimental examples are provided.

© 2004 Optical Society of America

OCIS Codes
(040.1880) Detectors : Detection
(300.6190) Spectroscopy : Spectrometers
(300.6270) Spectroscopy : Spectroscopy, far infrared
(300.6390) Spectroscopy : Spectroscopy, molecular

Frank C. De Lucia, "Noise, detectors, and submillimeter–terahertz system performance in nonambient environments," J. Opt. Soc. Am. B 21, 1273-1279 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. W. C. King and W. Gordy, “One-to-two millimeter wave spectroscopy. IV. Experimental methods and results for OCS, CH3F, and H2O,” Phys. Rev. 93, 407–412 (1954).
  2. W. Gordy, “Microwave spectroscopy in the region of 4–0.4 millimeters,” J. Pure Appl. Chem. 2, 403–434 (1965).
  3. P. Helminger, F. C. De Lucia, and W. Gordy, “Extension of microwave absorption spectroscopy to 0.37-mm wavelength,” Phys. Rev. Lett. 25, 1397–1399 (1970).
  4. A. F. Krupnov and A. V. Burenin, “New methods in submillimeter microwave spectroscopy,” in Molecular Spectroscopy: Modern Research, K. N. Rao, ed. (Academic, New York, 1976), pp. 93–126.
  5. P. Helminger, J. K. Messer, and F. C. De Lucia, “Continuously tunable coherent spectroscopy for the 0.1- to 1.0-THz region,” Appl. Phys. Lett. 42, 309–310 (1983).
  6. G. Winnewisser, “Spectroscopy in the terahertz region,” Vib. Spectrosc. 8, 241–253 (1995).
  7. E. Herbst, “Chemistry in the interstellar medium,” Annu. Rev. Phys. Chem. 46, 27–53 (1995).
  8. J. W. Waters, W. G. Read, L. Froidevaux, R. F. Jarnot, R. E. Cofield, D. A. Flower, G. K. Lau, H. M. Picket, M. L. Santee, D. L. Wu, M. A. Boyles, J. R. Burke, R. R. Lay, M. S. Loo, N. J. Livesey, T. A. Lungu, G. L. Manney, L. L. Nakamura, V. S. Perum, B. P. Ridenoure, Z. Shippony, P. H. Siegel, R. P. Thurstans, R. S. Harwood, H. C. Pumphrey, and M. J. Filipiak, “The UARS and EOS microwave limb sounder experiments,” J. Atmos. Sci. 56, 194–218 (1999).
  9. W. Gordy and R. L. Cook, Microwave Molecular Spectra, 3rd. ed. (Wiley, New York, 1984), Vol. 18, p. 929.
  10. F. C. De Lucia, “The study of laser processes by millimeter and submillimeter microwave spectroscopy,” Appl. Phys. Lett. 31, 606–608 (1977).
  11. D. D. Skatrud and F. C. De Lucia, “Dynamics of the HCN discharge laser,” Appl. Phys. Lett. 46, 631–633 (1985).
  12. A. Carrington, Microwave Spectroscopy of Free Radicals (Academic, London, 1974).
  13. A. Charo and F. C. De Lucia, “The millimeter and submillimeter spectrum of CF2 and its production in a dc glow discharge,” J. Mol. Spectrosc. 94, 363–368 (1982).
  14. R. C. Woods, T. A. Dixon, R. J. Saykally, and P. G. Szanto, “Laboratory microwave spectrum of HCO+,” Phys. Rev. Lett. 35, 1269–1272 (1975).
  15. F. C. van den Heuvel and A. Dynamus, “Observation of far-infrared transitions of HCO+, CO+, and NH2+,” Chem. Phys. Lett. 92, 219–222 (1982).
  16. F. C. De Lucia, E. Herbst, G. M. Plummer, and G. A. Blake, “The production of large concentrations of molecular ions in the lengthened negative glow region of a discharge,” J. Chem. Phys. 78, 2312–2316 (1983).
  17. C. Demuyuck, “Millimeter-wave spectroscopy in electric discharges. Rare molecules show themselves only if you look in the other direction,” J. Mol. Spectrosc. 168, 215 (1994).
  18. F. C. De Lucia, “Spectroscopy in the terahertz spectral region,” in Sensing with Terahertz Radiation, D. Mittleman, ed. (Springer, Berlin, 2003), pp. 39–154.
  19. D. van der Weide, “Applications and outlook for electronic terahertz technology,” Opt. Photonics News 14, 48–53 (2003).
  20. M. van Exter, C. Fattinger, and D. R. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14, 1128–1130 (1989).
  21. D. R. Grischkowsky, “An ultrafast optoelectronic THz beam system: applications to time-domain spectroscopy,” Opt. Photonics News 3, 21–28 (1992).
  22. D. R. Grischkowsky, “Nonlinear generation of sub-psec pulses of THz electromagnetic radiation by optoelectronics—application to time-domain spectroscopy,” in Frontiers in Nonlinear Optics, H. Walther, N. Koroteev, and M. O. Scully, eds. (Institute of Physics, London, 1993).
  23. R. A. Cheville and D. R. Grischkowsky, “Far-infrared terahertz time-domain spectroscopy of flames,” Opt. Lett. 20, 1646–1648 (1995).
  24. H. Harde, R. A. Cheville, and D. R. Grischkowsky, “THz studies of collision-broadened rotational lines,” J. Phys. Chem. A 101, 3646–3660 (1997).
  25. D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing with terahertz time-domain spectroscopy,” Appl. Phys. B 67, 379–390 (1998).
  26. R. A. Cheville, “Observation of pure rotational absorption spectra in the ν2 band of hot H2O in flames,” Opt. Lett. 23, 531–533 (1998).
  27. R. A. Cheville and D. R. Grischkowsky, “Far-infrared foreign and self-broadened rotational linewidths of high-temperature water vapor,” J. Opt. Soc. Am. B 16, 317–322 (1999).
  28. H. Harde, J. Zhao, M. Wolff, R. A. Cheville, and D. R. Grischkowsky, “THz time-domain spectroscopy on ammonia,” J. Phys. Chem. A 105, 6038–6047 (2001).
  29. P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89, 2357–2359 (2001).
  30. M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106, 7146–7159 (2002).
  31. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
  32. H. M. Pickett, E. A. Cohen, D. E. Brinza, and M. M. Schaefer, “The submillimeter wavelength spectrum of methanol,” J. Mol. Spectrosc. 89, 542 (1981).
  33. H. E. Warner, W. T. Conner, R. H. Petrmichl, and R. C. Woods, “Laboratory detection of the 110-111 submillimeter wave transition of the H2D+ ion,” J. Chem. Phys. 81, 2514 (1984).
  34. M. A. Anderson and L. M. Ziurys, “The millimeter/submillimeter spectrum and rotational rest frequencies of MgCH3 (X 2A1),” Astrophys. J. Lett. 452, L157 (1995).
  35. S. Urban, D. Papousek, S. P. Belov, A. F. Krupnov, M. Y. Tret’yakov, K. Yamada, and G. Winnewisser, “A simultaneous analysis of the microwave, submillimeter wave, and infrared transitions between the ground and ν2 inversion-rotation levels of 15NH3,” J. Mol. Spectrosc. 101, 16–29 (1983).
  36. G. Winnewisser, A. F. Krupnov, M. Y. Tretyakov, M. Liedtke, F. Lewen, A. H. Saleck, R. Schieder, A. P. Shkaev, and S. V. Volokhov, “Precision broadband spectroscopy in the terahertz region,” J. Mol. Spectrosc. 165, 294–300 (1994).
  37. F. Lewen, S. P. Belov, F. Maiwald, T. Klaus, and G. Winnewisser, “A quasi-optical multiplier for terahertz spectroscopy,” Z. Naturforsch. Teil A 50, 1182–1186 (1995).
  38. D. T. Petkie, T. M. Goyette, R. P. A. Bettens, S. P. Belov, S. Albert, P. Helminger, and F. C. De Lucia, “A fast scan submillimeter spectroscopic technique,” Rev. Sci. Instrum. 68, 1675–1683 (1997).
  39. J. R. Demers, T. M. Goyette, K. B. Ferrio, H. O. Everitt, B. D. Guenther, and F. C. De Lucia, “Spectral purity and sources of noise in femtosecond-demodulation THz sources driven by Ti: sapphire mode-locked lasers,” IEEE J. Quantum Electron. 37, 595–605 (2001).
  40. S. Viciani, F. Marin, and P. De Natale, “Noise characterization of a coherent tunable far infrared spectrometer,” Rev. Sci. Instrum. 69, 372–376 (1998).
  41. J. R. Reitz and F. J. Milford, Foundations of Electromagnetic Theory (Addison-Wesley, Reading, Mass., 1960).
  42. W. B. Lewis, “Fluctuations in streams of thermal radiation,” Proc. Phys. Soc. 59, 34–40 (1947).
  43. E. H. Putley, “The ultimate sensitivity of sub-mm detectors,” Infrared Phys. 4, 1–8 (1964).
  44. W. L. Wolfe and G. J. Zissis, The Infrared Handbook (U.S. Office of Naval Research, Washington, D.C., 1978).
  45. E. L. Manson, Jr., W. W. Clark, F. C. De Lucia, and W. Gordy, “Millimeter spectrum and molecular constants of silicon monoxide,” Phys. Rev. A 15, 223–226 (1977).
  46. L. E. Snyder and D. Buhl, “Detection of new stellar sources of vibrationally excited silicon monoxide maser emission at 6.95 millimeters,” Astrophys. J. 197, 329–340 (1975).
  47. J. C. Pearson, T. Anderson, E. Herbst, F. C. De Lucia, and P. Helminger, “Millimeter- and submillimeter-wave spectrum of highly excited states of water,” Astrophys. J., Suppl. Ser. 379, L41–L43 (1991).
  48. F. C. De Lucia and P. Helminger, “Millimeter spectroscopy of active laser plasmas: the excited vibrational states of HCN,” J. Chem. Phys. 67, 4262–4267 (1977).
  49. D. D. Skatrud and F. C. De Lucia, “Excitation, inversion, and relaxation mechanisms of the HCN FIR discharge laser,” Appl. Phys. A 35, 179–193 (1984).
  50. G. W. Chantry, Submillimeter Spectroscopy (Academic, New York, 1971).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited