OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 7 — Jul. 1, 2004
  • pp: 1305–1317

Design of a C aperture to achieve λ/10 resolution and resonant transmission

Xiaolei Shi and Lambertus Hesselink  »View Author Affiliations


JOSA B, Vol. 21, Issue 7, pp. 1305-1317 (2004)
http://dx.doi.org/10.1364/JOSAB.21.001305


View Full Text Article

Enhanced HTML    Acrobat PDF (1571 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Small subwavelength apertures provide high spatial resolution that is not limited by the diffraction limit. However, application of these apertures to practical problems has been hindered by the critical problem of extremely low power transmission efficiency. Recently, we reported a specially designed subwavelength aperture that has a letter C shape (ShiX.ThorntonR. L.HesselinkL., Opt. Lett. 28, 1320 (2003)]. A well-designed C aperture can provide both a high spatial resolution of ∼λ/10 and a high power throughput greater than 1. We present the underlying design ideas of the C aperture and report interesting general properties of optical transmissions through a single two-dimensional subwavelength aperture, based on numerical finite-difference time-domain simulations and fundamental observations. These results are expected to provide helpful information for both C-aperture applications and general studies of subwavelength metallic structures.

© 2004 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(110.5220) Imaging systems : Photolithography
(180.0180) Microscopy : Microscopy
(210.0210) Optical data storage : Optical data storage
(260.5740) Physical optics : Resonance

Citation
Xiaolei Shi and Lambertus Hesselink, "Design of a C aperture to achieve λ/10 resolution and resonant transmission," J. Opt. Soc. Am. B 21, 1305-1317 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-7-1305


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. H. Synge, “A suggested method for extending microscopic resolution into the ultramicroscopic region,” London, Edinburgh Dublin Philos. Mag. J. Sci. 6, 356 (1928).
  2. E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237, 510 (1972). [CrossRef] [PubMed]
  3. A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “De-velopment of a 500 Aa spatial resolution light microscope. I. Light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13, 227–231 (1984). [CrossRef]
  4. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984). [CrossRef]
  5. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163 (1944). [CrossRef]
  6. G. A. Valaskovic, M. Holton, and G. H. Morrison, “Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes,” Appl. Opt. 34, 1215–1228 (1995). [CrossRef] [PubMed]
  7. D. Zeisel, S. Nettesheim, B. Dutoit, and R. Zenobi, “Pulsed laser-induced desorption and optical imaging on a nanometer scale with scanning near-field microscopy using chemically etched fiber tips,” Appl. Phys. Lett. 68, 2491–2492 (1996). [CrossRef]
  8. T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  9. H. Ghaemi, T. Thio, D. Grupp, T. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998). [CrossRef]
  10. T. Kim, T. Thio, T. Ebbesen, D. Grupp, and H. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett. 24, 256–258 (1999). [CrossRef]
  11. D. Grupp, H. Lezec, T. Thio, and T. Ebbesen, “Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11, 860 (1999). [CrossRef]
  12. J. Porto, F. Garcia-Vidal, and J. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999). [CrossRef]
  13. L. Martin-Moreno, F. Garcia-Vidal, H. Lezec, K. Pellerin, T. Thio, J. Pendry, and T. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001). [CrossRef] [PubMed]
  14. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001). [CrossRef] [PubMed]
  15. S. Hohng, Y. Yoon, D. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. Park, K. Yoo, J. Kim, H. Ryu, and Q. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002). [CrossRef]
  16. F. Z. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev. Lett. 3901 (2002).
  17. H. Schouten, T. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E 67, 036608 (2003). [CrossRef]
  18. X. Shi, R. L. Thornton, and L. Hesselink, “Ultrahigh light transmission through a C-shaped nanoaperture,” Opt. Lett. 28, 1320–1322 (2003). [CrossRef] [PubMed]
  19. X. Shi, R. L. Thornton, and L. Hesselink, “A nano-aperture with 1000× power throughput enhancement for very small aperture laser system (VSAL),” Proc. SPIE 4342, 320–327 (2002). [CrossRef]
  20. K. Tanaka and M. Tanaka, “Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton,” J. Microsc. 210, 294–300 (2003). [CrossRef] [PubMed]
  21. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 2000).
  22. XFDTD, 5.0, Remcom, Inc. (2000).
  23. L. Novotny, D. W. Pohl, and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett. 20, 970–972 (1995). [CrossRef] [PubMed]
  24. R. S. Elliott, An Introduction to Guided Waves and Microwave Circuits (Prentice-Hall, Englewood Cliffs, N.J., 1993).
  25. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited