OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 7 — Jul. 1, 2004
  • pp: 1318–1327

Longitudinal mode-hopping hysteresis and bistability in a homogeneously broadened, continuous-wave Raman laser

Lei S. Meng, Peter A. Roos, and John L. Carlsten  »View Author Affiliations


JOSA B, Vol. 21, Issue 7, pp. 1318-1327 (2004)
http://dx.doi.org/10.1364/JOSAB.21.001318


View Full Text Article

Acrobat PDF (227 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Steady-state bistable lasing and hysteretic mode hops of two adjacent longitudinal modes are measured in a homogeneously broadened cw laser system: a cw rotational Raman laser in H<sub>2</sub>. As the pump laser’s frequency is cyclically tuned, the mode hops between two adjacent longitudinal Stokes modes show hysteresis. Theoretical modeling of the hysteresis effect indicates that the gain of the subthreshold Stokes mode is suppressed by a Raman-assisted multiwave mixing process. The theoretical calculation agrees well with the experimental measurement.

© 2004 Optical Society of America

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(190.3100) Nonlinear optics : Instabilities and chaos
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes

Citation
Lei S. Meng, Peter A. Roos, and John L. Carlsten, "Longitudinal mode-hopping hysteresis and bistability in a homogeneously broadened, continuous-wave Raman laser," J. Opt. Soc. Am. B 21, 1318-1327 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-7-1318


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. N. B. Abraham, L. A. Lugiato, and L. M. Narducci, “Overview of instabilities in laser systems,” J. Opt. Soc. Am. B 2, 7–14 (1985).
  2. L. M. Narducci, J. R. Tredicce, L. A. Lugiato, N. B. Abraham, and D. K. Bandy, “Mode-mode competition and unstable behavior in a homogeneously broadened ring laser,” Phys. Rev. A 33, 1842–1854 (1986).
  3. M. Harris, R. Loudon, T. J. Shepherd, and J. M. Vaughan, “Mode-hopping hysteresis in a single-frequency laser,” Opt. Commun. 101, 432–441 (1993).
  4. J. K. Brasseur, K. S. Repasky, and J. L. Carlsten, “Continuous-wave Raman laser in H2,” Opt. Lett. 23, 367–369 (1998).
  5. P. A. Roos, J. K. Brasseur, and J. L. Carlsten, “Diode-pumped nonresonant continuous-wave Raman laser in H2 with resonant optical feedback stabilization,” Opt. Lett. 24, 1130–1132 (1999).
  6. L. S. Meng, P. A. Roos, J. K. Brasseur, and J. L. Carlsten, “Widely tunable continuous-wave Raman laser in diatomic hydrogen pumped by an external-cavity diode laser,” Opt. Lett. 25, 472–474 (2000).
  7. P. A. Roos, L. S. Meng, and J. L. Carlsten, “Efficient, tunable, high power cw near-infrared generation through Raman down-conversion of a diode laser in H 2,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), postdeadline paper CPD24.
  8. L. S. Meng, P. A. Roos, J. K. Brasseur, and J. L. Carlsten, “High-conversion-efficiency, diode-pumped continuous-wave Raman laser,” Opt. Lett. 26, 426–428 (2001).
  9. L. S. Meng, P. A. Roos, J. K. Brasseur, and J. L. Carlsten, “Continuous-wave rotational Raman laser in H2,” Opt. Lett. 27, 1226–1228 (2002).
  10. G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and density dependence of the linewidths and line shifts of the rotational Raman lines in N2 and H2,” Phys. Rev. A 34, 1944–1951 (1986).
  11. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
  12. M. D. Duncan, R. Mahon, J. Reintjes, and L. L. Tankersley, “Parametric Raman gain suppression in D2 and H2,” Opt. Lett. 11, 803–805 (1986).
  13. J. K. Brasseur, P. A. Roos, K. S. Repasky, and J. L. Carlsten, “Characterization of a continuous-wave Raman laser in H2,” J. Opt. Soc. Am. B 16, 1305–1312 (1999).
  14. R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).
  15. A. E. Siegman, Lasers (University Science, Sausalito, Calif., 1986).
  16. S. E. Harris and A. V. Sokolov, “Broadband spectral generation with refractive index control,” Phys. Rev. A 55, R4019–R4022 (1997).
  17. S. E. Harris and A. V. Sokolov, “Subfemtosecond pulse generation by molecular modulation,” Phys. Rev. Lett. 81, 2894–2897 (1998).
  18. Fam Le Kien, J. Q. Liang, M. Katsuragawa, K. Ohtsuki, K. Hakuta, and A. V. Sokolov, “Subfemtosecond pulse generation with molecular coherence control in stimulated Raman scattering,” Phys. Rev. A 60, 1562–1571 (1999).
  19. Other higher-order Stokes and anti-Stokes modes cannot experience cavity enhancement since their wavelengths are out of reflectivity bandwidth of the cavity mirrors.
  20. L. S. Meng, “Continuous-wave Raman laser in H 2 : semiclassical theory and diode-pumping experiments,” Ph.D. dissertation (Montana State University, Bozeman, Mont., 2002).
  21. The coherence dephasing time for high-pressure and room-temperature H 2 gas is of the order of 10−9 s; while for the cw Raman laser, the cavity field buildup time is of the order of 10−6 s or slower.
  22. J. K. Brasseur, P. A. Roos, L. S. Meng, and J. L. Carlsten, “Frequency tuning characteristics of a continuous wave Raman laser in H2,” J. Opt. Soc. Am. B 17, 1229–1232 (2000).
  23. R. Corbalan, J. Cortit, and F. Prati, “Competition and bistability of longitudinal modes in a Raman laser,” Phys. Rev. A 53, 481–485 (1996).
  24. H. Risken and K. Nummedal, “Self-pulsing in lasers,” J. Appl. Phys. 39, 4662–4672 (1968).
  25. R. G. Harrison and Weiping Lu, “Origin of periodic, chaotic, and bistable emission from Raman lasers,” Phys. Rev. Lett. 63, 1372–1375 (1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited