OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 7 — Jul. 1, 2004
  • pp: 1328–1347

Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit

Jerry I. Dadap, Jie Shan, and Tony F. Heinz  »View Author Affiliations


JOSA B, Vol. 21, Issue 7, pp. 1328-1347 (2004)
http://dx.doi.org/10.1364/JOSAB.21.001328


View Full Text Article

Acrobat PDF (574 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The electromagnetic theory of optical second-harmonic generation from small spherical particles comprised of centrosymmetric material is presented. The interfacial region where the inversion symmetry is broken provides a source of the nonlinearity. This response is described by a general surface nonlinear susceptibility tensor for an isotropic interface. In addition, the appropriate weak bulk terms for an isotropic centrosymmetric medium are introduced. The linear optical response of the sphere and the surrounding region is assumed to be isotropic, but otherwise arbitrary. The analysis is carried out to leading order in the ratio of (a/λ), the particle radius to the wavelength of the incident light, and can be considered as the Rayleigh limit for second-harmonic generation from a sphere. Emission from the sphere arises from both induced electric dipole and electric quadrupole moments at the second-harmonic frequency. The former requires a nonlocal excitation mechanism in which the phase variation of the pump beam across the sphere is considered, while the latter is present for a local-excitation mechanism. The locally excited electric dipole term, analogous to the source for linear Rayleigh scattering, is absent for the nonlinear case because of the overall inversion symmetry of the problem. The second-harmonic field is found to scale as (a/λ)3 and to be completely determined by two effective nonlinear susceptibility coefficients formed as a prescribed combination of the surface and bulk nonlinearities. Characteristic angular and polarization selection rules resulting from the mechanism of the radiation process are presented. Various experimental aspects of the problem are examined, including the expected signal strengths and methods of determining the nonlinear susceptibilities. The spectral characteristics associated with the geometry of a small sphere are also discussed, and distinctive localized plasmon resonances are identified.

© 2004 Optical Society of America

OCIS Codes
(190.3970) Nonlinear optics : Microparticle nonlinear optics
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(290.4020) Scattering : Mie theory
(290.5850) Scattering : Scattering, particles
(290.5870) Scattering : Scattering, Rayleigh

Citation
Jerry I. Dadap, Jie Shan, and Tony F. Heinz, "Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit," J. Opt. Soc. Am. B 21, 1328-1347 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-7-1328


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908).
  2. P. Debye, “Der Lichtdruck auf Kugeln von beliebigem Material,” Ann. Phys. (Leipzig) 30, 57–136 (1909).
  3. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  4. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  5. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  6. N. Bloembergen and P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606–622 (1962).
  7. C. Flytzanis, F. Hache, M. C. Klein, D. Ricard, and P. Roussignol, “Nonlinear optics in composite materials,” Prog. Opt. 29, 321–411 (1991).
  8. U. Kreibig, in Handbook of Optical Properties, R. E. Hummel and P. Wißmann, eds. (CRC, Boca Raton, Fla., 1997), Vol. II, p. 145 and references therein.
  9. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995).
  10. R. F. Haglund, Jr., in Handbook of Optical Properties, R. E. Hummel and P. Wißmann, eds. (CRC, Boca Raton, Fla., 1997), Vol. II, p. 191 and references therein.
  11. J. L. Cheung, J. M. Hartings, and R. K. Chang, in Handbook of Optical Properties, R. E. Hummel and P. Wißmann, eds. (CRC, Boca Raton, Fla., 1997), Vol. II, p. 233, and references therein.
  12. S. V. Gaponenko, Optical Properties of Semiconductor Nanocrystals (Cambridge University Press, New York, 1998).
  13. J. W. Strutt (Lord Rayleigh), “On the light from the sky, its polarization and colour,” Philos. Mag. 41, 107–120, 274–279 (1871).
  14. J. F. McGilp, “Optical characterization of semiconductor surfaces and interfaces,” Prog. Surf. Sci. 49, 1–106 (1995).
  15. K. B. Eisenthal, “Liquid interfaces probed by second-harmonic and sum-frequency spectroscopy,” Chem. Rev. 96, 1343–1360 (1996).
  16. Y. R. Shen, “Wave mixing spectroscopy for surface studies,” Solid State Commun. 102, 221–229 (1997).
  17. T. F. Heinz, “Second-order nonlinear optical effects at surfaces and interfaces,” in Nonlinear Surface Electromagnetic Phenomena, H. Ponath and G. Stegeman, eds. (Elsevier, Amsterdam, 1991) pp. 353–416.
  18. J. I. Dadap and T. F. Heinz, “Nonlinear optical spectroscopy of surfaces and interfaces,” in Encyclopedia of Chemical Physics and Physical Chemistry, J. H. Moore and N. D. Spencer, eds. (Institute of Physics, Bristol, 2001), pp. 1089–1125.
  19. H. Wang, E. C. Y. Yan, E. Borguet, and K. B. Eisenthal, “Second harmonic generation from the surface of centrosymmetric particles in bulk solution,” Chem. Phys. Lett. 259, 15–20 (1996).
  20. J. M. Hartings, A. Poon, X. Pu, R. K. Chang, and T. M. Leslie, “Second harmonic generation and fluorescence images from surfactants on hanging droplets,” Chem. Phys. Lett. 281, 389–393 (1997).
  21. A. Srivastava and K. B. Eisenthal, “Kinetics of molecular transport across a liposome bilayer,” Chem. Phys. Lett. 292, 345–351 (1998).
  22. H. Wang, E. C. Y. Yan, Y. Liu, and K. B. Eisenthal, “Energetics and population of molecules at microscopic liquid and solid surfaces,” J. Phys. Chem. B 102, 4446–4450 (1998).
  23. N. Yang, W. E. Angerer, and A. G. Yodh, “Angle-resolved second-harmonic light scattering from colloidal particles,” Phys. Rev. Lett. 87, 103902 (2001).
  24. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83, 4045–4048 (1999).
  25. A. V. Baranov, Ya. S. Bobovich, and V. I. Petrov, “Study of surface-enhanced Raman-scattering initiated by adsorption of molecules on colloidal-silver microparticles,” Opt. Spectrosc. 58, 353–356 (1985) [ Opt. Spectrosk. 58, 578–582 (1985)].
  26. C. K. Johnson and S. A. Soper, “Nonlinear surface-enhanced spectroscopy of silver colloids and pyridine: hyper-Raman and second-harmonic scattering,” J. Phys. Chem. 93, 7281–7285 (1989).
  27. P. Galletto, P. F. Brevet, H. H. Girault, R. Antoine, and M. Broyer, “Enhancement of the second harmonic response by adsorbates on gold colloids: the effect of aggregation,” J. Phys. Chem. B 103, 8706–8710 (1999).
  28. Y. Fang, “Optical absorption of nanoscale colloidal silver: Aggregate band and adsorbate-silver surface band,” J. Chem. Phys. 108, 4315–4318 (1998).
  29. H. F. Wang, T. Troxler, A. G. Yeh, and H. L. Dai, “In situ, nonlinear optical probe of surfactant adsorption on the surface of microparticles in colloids,” Langmuir 16, 2475–2481 (2000).
  30. E. C. Y. Yan, Y. Liu, and K. B. Eisenthal, “In situ studies of molecular transfer between microparticles by second-harmonic generation,” J. Phys. Chem. B 105, 8531–8537 (2001).
  31. E. C. Y. Yan and K. B. Eisenthal, “Effect of cholesterol on molecular transport of organic cations across liposome bilayers probed by second harmonic generation,” Biophys. J. 79, 898–903 (2000).
  32. X.-M. Shang, Y. Liu, E. C. Y. Yan, and K. B. Eisenthal, “Effects of counterions on molecular transport across liposome bilayer: probed by second harmonic generation,” J. Phys. Chem. B 105, 12816–12822 (2001).
  33. E. C. Y. Yan, Y. Liu, and K. B. Eisenthal, “New method for determination of surface potential of microscopic particles by second harmonic generation,” J. Phys. Chem. B 102, 6331–6336 (1998).
  34. Y. Liu, E. C. Y. Yan, X.-L. Zhao, and K. B. Eisenthal, “Surface potential of charged liposomes determined by second harmonic generation,” Langmuir 17, 2063–2066 (2001).
  35. Y. Liu, J. I. Dadap, D. Zimdars, and K. B. Eisenthal, “Study of interfacial charge-transfer complex on TiO2 particles in aqueous suspension by second-harmonic generation,” J. Phys. Chem. B 103, 2480–2486 (1999).
  36. F. W. Vance, B. I. Lemon, and J. T. Hupp, “Enormous hyper-Rayleigh scattering from nanocrystalline gold particle suspensions,” J. Phys. Chem. B 102, 10091–10093 (1998).
  37. R. C. Johnson, J. T. Li, J. T. Hupp, and G. C. Schatz, “Hyper-Rayleigh scattering studies of silver, copper, and platinum nanoparticle suspensions,” Chem. Phys. Lett. 356, 534–540 (2002).
  38. P. Galletto, P. F. Brevet, H. H. Girault, R. Antoine, and M. Broyer, “Size dependence of the surface plasmon enhanced second harmonic response of gold colloids: towards a new calibration method,” Chem. Commun. 581–582 (1999).
  39. B. S. Santos, G. A. L. Pereira, D. V. Petrov, C. de Mello Donegá, “First hyperpolarizability of CdS nanoparticles studied by hyper-Rayleigh scattering,” Opt. Commun. 178, 187–192 (2000).
  40. D. V. Petrov, B. S. Santos, G. A. L. Pereira, and C. de Mello Donegá, “Size and band-gap dependences of the first hyperpolarizability of CdxZn1−xS nanocrystals,” J. Phys. Chem. B 106, 5325–5334 (2002).
  41. M. Jacobsohn and U. Banin, “Size dependence of second harmonic generation in CdSe nanocrystal quantum dots,” J. Phys. Chem. B 104, 1–5 (2000).
  42. M. J. Eilon, T. Mokari, and U. Banin, “Surface exchange effect on hyper Rayleigh scattering in CdSe nanocrystals,” J. Phys. Chem. B 105, 12726–12731 (2001).
  43. C. Landes, M. Braun, and M. A. El-Sayed, “The effect of surface adsorption on the hyper-Rayleigh scattering of large and small CdSe nanoparticles,” Chem. Phys. Lett. 363, 465–470 (2002).
  44. M. R. V. Sahyun, “Hyper-Rayleigh scattering (HRS) spectroscopy applied to nanoparticulate TiO2,” Spectrochim. Acta, Part A 58, 3149–3157 (2002).
  45. Y. Zhang, M. Ma, X. Wang, D. Fu, N. Gu, J. Liu, Z. Lu, Y. Ma, L. Xu, and K. Chen, “First-order hyperpolarizability of ZnS nanocrystal quantum dots studied by hyper-Rayleigh scattering,” J. Phys. Chem. Solids 63, 2115–2118 (2002).
  46. Y. Zhang, M. Ma, X. Wang, D. G. Fu, H. Q. Zhang, N. Gu, J. Z. Liu, Z. H. Lu, L. Xu, and K. J. Chen, “Second-order optical nonlinearity of surface-capped CdS nanoparticles and effect of surface modification,” J. Phys. Chem. Solids 64, 927–931 (2003).
  47. E. C. Hao, G. C. Schatz, R. C. Johnson, and J. T. Hupp, “Hyper-Rayleigh scattering from silver nanoparticles,” J. Chem. Phys. 117, 5963–5966 (2002).
  48. S. Roke, W. G. Roeterdink, J. E. G. J. Wijnhoven, A. V. Petukhov, A. W. Kleyn, and M. Bonn, “Vibrational sum frequency scattering from a submicron suspension,” Phys. Rev. Lett. 91, 258302 (2003).
  49. J. Nappa, G. Revillod, J.-P. Abid, I. Russier-Antoine, C. Jonin, E. Benichou, H. H. Girault, and P. F. Brevet, “Hyper-Rayleigh scattering of gold nanorods and their relationship with linear assemblies of gold nanospheres,” Faraday Discuss. 125, 145–156 (2004).
  50. O. A. Aktsipetrov, P. V. Elyutin, A. A. Nikulin, and E. A. Ostrovskaya, “Size effects in optical second-harmonic generation by metallic nanocrystals and semiconductor quantum dots: the role of quantum chaotic dynamics,” Phys. Rev. B 51, 17591–17599 (1995).
  51. O. A. Aktsipetrov, P. V. Elyutin, A. A. Fedyanin, A. A. Nikulin, and A. N. Rubtsov, “Second-harmonic generation in metal and semiconductor low-dimensional structures,” Surf. Sci. 325, 343–355 (1995).
  52. T. Kuroda, S. Matsushita, F. Minami, K. Inoue, A. V. Baranov, “Observation of homogeneous broadening in semiconductor nanocrystals by resonant second-harmonic scattering spectroscopy,” Phys. Rev. B 55, R16041–R16044 (1997).
  53. R. Antoine, M. Pellarin, B. Palapant, M. Broyer, B. Prével, P. Galletto, P. F. Brevet, and H. H. Girault, “Surface plasmon enhanced second harmonic response from gold clusters embedded in an alumina matrix,” J. Appl. Phys. 84, 4532–4536 (1998).
  54. A. Brysch, G. Bour, R. Neuendorf, and U. Kreibig, “Nonlinear optical spectroscopy of embedded semiconductor clusters,” Appl. Phys. B 68, 447–451 (1999).
  55. M. L. Sandrock, C. D. Pibel, F. M. Geiger, and C. A. Foss, Jr., “Synthesis and second-harmonic generation studies of noncentrosymmetric gold nanostructures,” J. Phys. Chem. B 103, 2668–2673 (1999).
  56. Y. Jiang, P. T. Wilson, M. C. Downer, C. W. White, and S. P. Withrow, “Second-harmonic generation from silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 78, 766–768 (2001).
  57. Y. Jiang, L. Sun, and M. C. Downer, “Second-harmonic spectroscopy of two-dimensional Si nanocrystal layers embedded in SiO2 films,” Appl. Phys. Lett. 81, 3034–3036 (2002).
  58. A. M. Malvezzi, M. Allione, M. Patrini, A. Stella, P. Cheyssac, and R. Kofman, “Melting-induced enhancement of the second-harmonic generation from metal nanoparticles,” Phys. Rev. Lett. 89, 087401 (2002).
  59. N. Thantu, R. S. Schley, and B. S. Justus, “Tunable room temperature second harmonic generation in glasses doped with CuCl nanocrystalline quantum dots,” Opt. Commun. 220, 203–210 (2003).
  60. A. Podlipensky, J. Lange, G. Seifert, H. Graener, and I. Cravetchi, “Second-harmonic generation from ellipsoidal silver nanoparticles embedded in silica glass,” Opt. Lett. 28, 716–718 (2003).
  61. R. Bavli, D. Yogev, S. Efrima, and G. Berkovic, “Second harmonic-generation studies of silver metal liquid-like films,” J. Phys. Chem. 95, 7422–7426 (1991).
  62. T. Götz, M. Buck, C. Dressler, F. Eisert, and F. Träger, “Optical second-harmonic generation by supported metal-clusters—size and shape effects,” Appl. Phys. A 60, 607–612 (1995).
  63. C. P. Collier, R. J. Saykaly, J. J. Shiang, S. E. Heinrichs, and J. R. Heath, “Reversible tuning of silver quantum dot monolayers through the metal-insulator transition,” Science 277, 1978–1981 (1997).
  64. T. Muller, P. H. Vaccaro, F. Balzer, and H.-G. Rubahn, “Size dependent optical second harmonic generation from surface bound Na clusters: comparison between experiment and theory,” Opt. Commun. 135, 103–108 (1997).
  65. J.-H. Klein-Wiele, P. Simon, and H.-G. Rubahn, “Size-dependent plasmon lifetimes and electron-phonon coupling time constants for surface bound Na clusters,” Phys. Rev. Lett. 80, 45–48 (1998).
  66. M. Simon, F. Träger, A. Assion, B. Lang, S. Voll, and G. Gerber, “Femtosecond time-resolved second-harmonic generation at the surface of alkali metal clusters,” Chem. Phys. Lett. 296, 579–584 (1998).
  67. B. Lamprecht, A. Leitner, F. R. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B 68, 419–423 (1999).
  68. S. Baldelli, A. S. Eppler, E. Anderson, Y. R. Shen, and G. A. Somorjai, “Surface enhanced sum frequency generation of carbon monoxide adsorbed on platinum nanoparticle arrays,” J. Chem. Phys. 113, 5432–5438 (2000).
  69. T. V. Murzina, A. A. Nikulin, O. A. Aktsipetrov, J. W. Ostrander, A. A. Mamedov, N. A. Kotov, M. A. C. Devillers, and J. Roark, “Nonlinear magneto-optical Kerr effect in hyper-Rayleigh scattering from layer-by-layer assembled films of yttrium iron garnet nanoparticles,” Appl. Phys. Lett. 79, 1309–1311 (2001).
  70. O. A. Aktsipetrov, “Nonlinear magneto-optics in magnetic nanoparticles,” Colloids Surf., A 202, 165–173 (2002).
  71. R. Srinivasan, Y. Tian, and I. I. Suni, “Surface plasmon effects on surface second harmonic generation during Au nanoparticle deposition onto H-Si(111),” Surf. Sci. 490, 308–314 (2001).
  72. N. Yang, W. E. Angerer, and A. G. Yodh, “Second-harmonic microscopy of single micrometer-size particles on a substrate,” Phys. Rev. A 64, 045801 (2001).
  73. H. Unterhalt, G. Rupprechter, and H.-J. Freund, “Vibrational sum frequency spectroscopy on Pd(111) and supported Pd nanoparticles: CO adsorption from ultrahigh vacuum to atmospheric pressure,” J. Phys. Chem. B 106, 356–367 (2002).
  74. G. Ma and H. C. Allen, “Diffuse reflection broad bandwidth sum frequency generation from particle surfaces,” J. Am. Chem. Soc. 124, 9374–9375 (2002).
  75. H. Tuovinen, M. Kauranen, K. Jefimovs, P. Vahimaa, T. Vallius, J. Turunen, N. V. Tkachenko, and H. Lemmetyinen, “Linear and second-order nonlinear optical properties of arrays of noncentrosymmetric gold nanoparticles,” J. Nonlinear Opt. Phys. Mater. 11, 421–432 (2002).
  76. T. S. Koffas, J. Kim, C. C. Lawrence, and G. A. Somorjai, “Detection of immobilized protein on latex microspheres by IR-visible sum frequency generation and scanning force microscopy,” Langmuir 19, 3563–3566 (2003).
  77. J. Martorell, R. Vilaseca, and R. Corbalán, “Second harmonic generation in a photonic crystal,” Appl. Phys. Lett. 70, 702–704 (1997).
  78. J. Martorell, R. Vilaseca, and R. Corbalán, “Scattering of second-harmonic light from small spherical particles ordered in a crystalline lattice,” Phys. Rev. A 55, 4520–4525 (1997).
  79. S. Sato and H. Inaba, “Observation of second harmonic-generation from optically trapped microscopic LiNbO3 particle using Nd-YAG laser,” Electron. Lett. 28, 286–287 (1992).
  80. V. Boutou, C. Favre, and J.-P. Wolf, “Femtosecond-laser induced SHG and SFG from charged water microdroplets,” in Conference on Lasers and Electro-Optics, Vol. 88 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper CMAA4.
  81. P. J. Campagnola, M.-D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J. 77, 3341–3349 (1999).
  82. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogeneous structural proteins in biological tissues,” Biophys. J. 81, 493–508 (2002).
  83. L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce, and J. Mertz, “Coherent scattering in multi-harmonic light microscopy,” Biophys. J. 80, 1568–1574 (2001).
  84. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100, 7075–7080 (2003).
  85. E. C. Y. Yan and K. B. Eisenthal, “Rotational dynamics of anisotropic microscopic particles studied by second harmonic generation,” J. Phys. Chem. B 104, 6686–6689 (2000).
  86. G. S. Agarwal and S. S. Jha, “Theory of second harmonic-generation at a metal-surface with surface-plasmon excitation,” Solid State Commun. 41, 499–501 (1982).
  87. N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174, 813–822 (1968).
  88. X. M. Hua and J. I. Gersten, “Theory of second-harmonic generation by small metal spheres,” Phys. Rev. B 33, 3756–3764 (1986).
  89. T. P. Shen and D. Rogovin, “Coherent frequency mixing in microparticle composites,” Phys. Rev. A 42, 4255–4268 (1990).
  90. K. Y. Lo and J. T. Lue, “Quantum-size effect on optical second-harmonic generation in small metallic particles,” Phys. Rev. B 51, 2467–2472 (1995).
  91. A. Guerrero and B. S. Mendoza, “Model for great enhancement of second-harmonic generation in quantum dots,” J. Opt. Soc. Am. B 12, 559–569 (1995).
  92. V. L. Brudny, B. S. Mendoza, and W. L. Mochán, “Second-harmonic generation from spherical particles,” Phys. Rev. B 62, 11152–11162 (2000).
  93. W. L. Mochán, J. A. Maytorena, B. S. Mendoza, and V. L. Brudny, “Second harmonic generation in arrays of spherical particles,” Phys. Rev. B 68, 085318 (2003).
  94. V. L. Brudny, W. L. Mochán, J. A. Maytorena, and B. S. Mendoza, “Second harmonic generation from a collection of nanoparticles,” Phys. Status Solidi B 240, 518–526 (2003).
  95. E. V. Makeev and S. E. Skipetrov, “Second harmonic generation in suspensions of spherical particles,” Opt. Commun. 224, 139–147 (2003).
  96. D. Östling, P. Stampfli, and K. H. Bennemann, “Theory of nonlinear-optical properties of small metallic spheres,” Z. Phys. D 28, 169–175 (1993).
  97. J. P. Dewitz, W. Hübner, and K. H. Bennemann, “Theory for nonlinear Mie-scattering from spherical metal clusters,” Z. Phys. D 37, 75–84 (1996).
  98. K. Hayata and M. Koshiba, “Theory of surface-emitting second-harmonic generation from optically trapped microspheres,” Phys. Rev. A 46, 6104–6107 (1992).
  99. C. K. Chen, T. F. Heinz, D. Ricard, and Y. R. Shen, “Surface-enhanced second-harmonic generation and Raman-scattering,” Phys. Rev. B 27, 1965–1979 (1983).
  100. G. Berkovic and S. Efrima, “Second harmonic-generation from composite films of spheroidal metal particles,” Langmuir 9, 355–357 (1993).
  101. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  102. For heterogeneous media with ε(sphere)≠ε(ambient), this term behaves like a polarization sheet at the interface, proportional to the product E (ω) Er(ω) and, hence, can be incorporated into the surface susceptibilities χs, ⊥⊥⊥(2) and χs, ∥⊥∥(2). The effect of this and any other terms that may contribute in a localized region at the interface is omitted from the analysis. These terms are incorporated in our treatment into the surface nonlinear susceptibility χ↔s(2), as has been discussed elsewhere, e.g., see Ref. 17 or P. Guyot-Sionnest and Y. R. Shen, “Bulk contribution in surface second-harmonic generation,” Phys. Rev. B 38, 7985–7989 (1988).
  103. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, 2nd ed. (Pergamon, New York, 1984), pp. 268–269.
  104. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975).
  105. The electric dipole, magnetic dipole, and electric quadrupole (tensor) moments are defined as p =∫x ρ(x)d x, m = (1/2c)∫x ×J (x)d x and Qij =∫[(xi xj)−r2 δij ]× ρ(x)d 3 x, respectively. By employing the relations ρ(r)=−∇⋅P (r) and J (r)=−iΩP (r), and performing integration by parts, we obtain Eqs. (7a)–(7c).
  106. For a sphere of arbitrary radius, an exact expression for the SH electric field for the homogeneous media can be obtained without employing the small-particle approximation. This limit (of neglecting differences in the dielectric functions) is known as the SH Rayleigh–Gans approximation, first applied by Martorell et al.78 for the case of a single nonlinear susceptibility element, χs, ⊥⊥⊥(2), and dispersionless media (K1=2k1). For the case of an isotropic surface having all three nonlinear susceptibility elements χs, ⊥⊥⊥(2), χs, ⊥ ∥ ∥(2), and χs, ∥⊥∥(2), we substitute Eq. (11) into Eq. (4) with K1=2k1. Making use of Eqs. (5a) and (5b), we obtain A(r). The resulting SH field in the radiation zone is E(2ω)(r)RG=[4πi exp(iK1r)/r]× (Ka)2(E0(ω))2 [Θ(θ, ε)θ⁁+ Φ(θ, ε)ε⁁], where Θ(θ, ε) and Φ(θ, ε) are functions given by Θ(θ, ε)=cos(θ/2) {[Γ1(θ)+ Γ2(θ)cos2(θ/2)]f(ε)+ Γ3(θ)(ε⁁0⋅ε⁁0)} and Φ(θ, ε)= −cos(θ/2)Γ1(θ)g(ε). Here, f(ε)=(ε⁁0⋅ρ⁁)2 and g(ε)=(ε⁁0⋅ρ⁁)(ε⁁0⋅ε⁁), with ρ⁁=cos εx⁁+sin εy⁁ and ε⁁= −sin εx⁁+cos εy⁁; Γ1(θ)= 2[(χs, ⊥⊥⊥(2)−χs, ⊥ ∥ ∥(2))F1(θ)− 2χs, ∥⊥∥(2)F2(θ)], Γ2(θ)= − (χs, ⊥⊥⊥(2)−χs, ⊥ ∥ ∥(2)) [F1(θ)− 2F2(θ)] −2χs, ∥⊥∥(2) [3F1(θ)− 2F2(θ)], and Γ3(θ)= −(χs, ⊥⊥⊥(2)+γ) F1(θ)−(χs, ⊥ ∥ ∥(2)+ γ)[F1(θ)−2F2(θ)]+ 2χs, ∥⊥∥(2)F1(θ), with the structure factors for δ= 2Ka sin(θ/2) of F1(θ)=(3/δ3) [(1− δ2/3)sin δ− δ cos δ] and F2(θ)=(3/δ3)[(1− δ2/2)sin δ−δ(1− δ2/6)cos δ]. (A similar treatment for SFG recently appeared in Ref. 48.) One should note that for the case of heterogeneous media, obtaining the SH field requires a full evaluation of Maxwell’s equation, as discussed and outlined in the Appendix A of this paper.
  107. C. T. Tai, “Equivalent layers of surface-charge, current sheet, and polarization in the eigenfunction-expansions of Green’s functions in electromagnetic theory,” IEEE Trans. Antennas Propag. 29, 733–739 (1981).
  108. D. Y. Smith, E. Shiles, and M. Inokuti, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, 1985), p. 369.
  109. R. W. Terhune, P. D. Maker, and C. M. Savage, “Measurements of nonlinear light scattering,” Phys. Rev. Lett. 14, 681–684 (1965).
  110. R. Bersohn, Y. H. Pao, and H. L. Frisch, “Double-quantum light scattering by molecules,” J. Chem. Phys. 45, 3184–3198 (1966).
  111. P. D. Maker, “Spectral broadening of elastic second-harmonic light scattering in liquids,” Phys. Rev. A 1, 923–951 (1970).
  112. V. Mizrahi and J. E. Sipe, “Phenomenological treatment of surface second-harmonic generation,” J. Opt. Soc. Am. B 5, 660–667 (1988).
  113. K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980–2983 (1991).
  114. E. H. Hill, “The theory of vector spherical harmonics,” Am. J. Phys. 22, 211–214 (1954).
  115. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Part II. (McGraw-Hill, New York, 1953), pp. 1898–1901.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited