OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 7 — Jul. 1, 2004
  • pp: 1358–1363

Nondeterministic scheme for preparation of nonmaximal entanglement between two atomic ensembles

Peng Xue and Guang-Can Guo  »View Author Affiliations


JOSA B, Vol. 21, Issue 7, pp. 1358-1363 (2004)
http://dx.doi.org/10.1364/JOSAB.21.001358


View Full Text Article

Acrobat PDF (242 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an experimentally feasible scheme to generate nonmaximal entanglement between two atomic ensembles. The degree of entanglement is readily tunable. The scheme involves laser manipulation of atomic ensembles; the setup includes adjustable quarter- and half-wave plates, a beam splitter, polarizing beam splitters, and single-photon detectors, and fits well the state of current experimental technology. Finally, we use the nonmaximally entangled state of ensembles to demonstrate quantum nonlocality by detecting the Clauser–Horne–Shimony–Holt inequality.

© 2004 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(020.7490) Atomic and molecular physics : Zeeman effect
(270.0270) Quantum optics : Quantum optics

Citation
Peng Xue and Guang-Can Guo, "Nondeterministic scheme for preparation of nonmaximal entanglement between two atomic ensembles," J. Opt. Soc. Am. B 21, 1358-1363 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-7-1358


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. W. Shor, “Algorithms for quantum computing: discrete logarithms and factoring,” in Proceedings of the 35th Annual Symposium on the Foundations of Computer Science (IEEE Computer Society Press, Los Alamitos, Calif., 1994), pp. 124–134.
  2. L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325–328 (1997).
  3. A. K. Ekert and R. Jozsa, “Quantum computation and Shor’s factoring algorithm,” Rev. Mod. Phys. 68, 733–753 (1996).
  4. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
  5. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
  6. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
  7. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
  8. H.-K. Lo, H.-F. Chau, and M. Ardehali, “Efficient quantum key distribution scheme and proof of its unconditional security,” http://arxiv.org/abs/quant-ph/0011056.
  9. P. Xue, C.-F. Li, and G.-C. Guo, “Efficient quantum-key-distribution scheme with nonmaximally entangled states,” Phys. Rev. A 64, 032305 (2001).
  10. P. Xue, C.-F. Li, and G.-C. Guo, “Addendum to ‘Efficient quantum-key-distribution scheme with nonmaximally entangled states’,” Phys. Rev. A 65, 034302 (2002).
  11. J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics 1, 195–200 (1964).
  12. P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
  13. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
  14. A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally entangled states: production, characterization, and utilization,” Phys. Rev. Lett. 83, 3103–3107 (1999).
  15. E. Hagley, X. Maĺtre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
  16. D. Bouwmeester, J.-W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of three-photon Greenberger-Horne-Zeilinger entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
  17. A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J.-M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
  18. C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000).
  19. J.-W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental demonstration of four-photon entanglement and high-fidelity teleportation,” Phys. Rev. Lett. 86, 4435–4438 (2001).
  20. M. D. Lukin, M. Fleischhauer, R. Cote, L.-M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001).
  21. L.-M. Duan, J. I. Cirac, P. Zoller, and E. S. Polzik, “Quantum communication between atomic ensembles using coherent light,” Phys. Rev. Lett. 85, 5643–5646 (2000).
  22. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–416 (2001).
  23. L.-M. Duan, “Entangling many atomic ensembles through laser manipulation,” Phys. Rev. Lett. 88, 170402 (2002).
  24. H. Pu and P. Meystre, “Creating macroscopic atomic EPR states from Bose condensates,” Preprint quant-ph/0007012.
  25. S. Potting, M. Cramer, and P. Meystre, “Momentum state engineering and control in Bose-Einstein condensates,” Phys. Rev. A 64, 063613 (2001).
  26. C. M. Savage and J. Ruostekoski, “Energetically stable particle-like Skyrmions in a trapped Bose-Einstein condensate,” Phys. Rev. Lett. 91, 010403 (2003).
  27. J. Ruostekoski, “Schrödinger cat state of a Bose-Einstein condensate in a double-well potential,” http://arxiv.org/abs/cond-mat/0005469.
  28. A. Kuzmich, N. P. Bigelow, and L. Mandel, “Atomic quantum nondemolition measurements and squeezing,” Europhys. Lett. 42, 481–486 (1998).
  29. J. Hald, J. L. Sorensen, C. Schori, and E. S. Polzik, “Spin squeezed atoms: a macroscopic entangled ensemble created by light,” Phys. Rev. Lett. 83, 1319–1322 (1999).
  30. A. Kuzmich, L. Mandel, and N. P. Bigelow, “Generation of spin squeezing via continuous quantum nondemolition measurement,” Phys. Rev. Lett. 85, 1594–1597 (2000).
  31. A. Sorensen and K. Molmer, “Entanglement and extreme spin squeezing,” Phys. Rev. Lett. 86, 4431–4434 (2001).
  32. B. Julsgaard, A. Kozhekin, and E. S. Polzik, “Experimental long-lived entanglement of two macroscopic objects,” Nature 413, 400–403 (2001).
  33. P. Xue and G.-C. Guo, “Scheme for preparation of multipartite entanglement of atomic ensembles,” Phys. Rev. A 67, 034302 (2003).
  34. L.-M. Duan, J. I. Cirac, and P. Zoller, “Three-dimensional theory for interaction between atomic ensembles and free-space light,” Phys. Rev. A 66, 023818 (2002).
  35. P. H. Eberhard, “Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment,” Phys. Rev. A 47, R747–R750 (1993).
  36. A. Garuccio, “Hardy’s approach, Eberhard’s inequality, and supplementary assumptions,” Phys. Rev. A 52, 2535–2537 (1995).
  37. L. Hardy, “Nonlocality for two particles without inequalities for almost all entangled states,” Phys. Rev. Lett. 71, 1665–1668 (1993).
  38. P. Xue, C.-F. Li, and G.-C. Guo, “Reducing the communication complexity with quantum entanglement,” Phys. Rev. A 64, 032304 (2001).
  39. Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631–3634 (1998).
  40. J. R. Torgerson, D. Branning, C. H. Monken, and L. Mandel, “Experimental demonstration of the violation of local realism without Bell inequalities,” Phys. Lett. A 204, 323–328 (1995).
  41. G. Digiuseppe, F. De Martini, and D. Boschi, “Experimental test of the violation of local realism in quantum mechanics without Bell inequalities,” Phys. Rev. A 56, 176–181 (1997).
  42. D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
  43. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
  44. J. F. Roch, K. Vigneron, Ph. Grelu, A. Sinatra, J.-Ph. Poizat, and Ph. Grangier, “Quantum nondemolition measurements using cold trapped atoms,” Phys. Rev. Lett. 78, 634–637 (1997).
  45. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, Cambridge, UK, 1999).
  46. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited