OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 7 — Jul. 1, 2004
  • pp: 1364–1368

Positive and negative dispersion in an Er3+-doped yttrium aluminum garnet crystal

Jun Qian, Hui-Fang Zhang, Jin-Yue Gao, and Jun Qian  »View Author Affiliations

JOSA B, Vol. 21, Issue 7, pp. 1364-1368 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (158 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate a four-level system in the Er3+-doped yttrium aluminum garnet crystal that can produce an absorption or gain doublet in the probe absorption spectrum when driven by a coherent field and incoherent pumping. It is found that the transparent linear positive or negative dispersion can occur between the doublet lines. We show that the group index of a probe pulse can be manipulated when we control the incoherent pumping and the coherent field.

© 2004 Optical Society of America

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(270.1670) Quantum optics : Coherent optical effects
(270.6620) Quantum optics : Strong-field processes

Jun Qian, Hui-Fang Zhang, Jin-Yue Gao, and Jun Qian, "Positive and negative dispersion in an Er3+-doped yttrium aluminum garnet crystal," J. Opt. Soc. Am. B 21, 1364-1368 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29–R32 (1992). [CrossRef] [PubMed]
  2. O. Schmidt, R. Wynands, Z. Hussein, and D. Meschede, “Steep dispersion and group velocities below c/3000 in coherent population trapping,” Phys. Rev. A 53, R27–R30 (1996). [CrossRef]
  3. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999). [CrossRef]
  4. D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999). [CrossRef]
  5. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999). [CrossRef]
  6. G. Muller, A. Wicht, R. Rinkle, and K. Danzmann, “A new kind of heterodyne measurement of coherent population trapping,” Opt. Commun. 127, 37–43 (1996). [CrossRef]
  7. S. E. Harris, “Pondermotive forces with slow light,” Phys. Rev. Lett. 85, 4032–4035 (2000). [CrossRef] [PubMed]
  8. A. B. Matsko, Y. V. Rostovtsev, H. Z. Cummins, and M. O. Scully, “Using slow light to enhance acousto-optical effects: application to squeezed light,” Phys. Rev. Lett. 84, 5752–5755 (2000). [CrossRef] [PubMed]
  9. U. Leonhardt and P. Piwnicki, “Ultrahigh sensitivity of slow-light gyroscope,” Phys. Rev. A 62, 055801 (2000). [CrossRef]
  10. F. L. Kien and K. Hakuta, “Stimulated Raman scattering with slow light,” Can. J. Phys. 78, 543–559 (2000). [CrossRef]
  11. L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature (London) 406, 277–279 (2000). [CrossRef]
  12. A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995). [CrossRef] [PubMed]
  13. S. E. Harris, “Lasers without inversion: interference of lifetime-broadened resonances,” Phys. Rev. Lett. 62, 1033–1036 (1989). [CrossRef] [PubMed]
  14. J. Y. Gao, H. Z. Zhang, H. F. Cui, X. Z. Guo, Y. Jiang, Q. W. Wang, G. X. Jin, and J. S. Li, “Inversionless light amplification in sodium,” Opt. Commun. 110, 590–594 (1994). [CrossRef]
  15. B. S. Ham, P. R. Hemmer, and M. S. Shahriar, “Efficient electromagnetically induced transparency in a rare-earth doped crystal,” Opt. Commun. 144, 227–230 (1997). [CrossRef]
  16. A. V. Turukhin, V. S. Sudarshanam, and M. S. Shahriar, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002). [CrossRef] [PubMed]
  17. H. Xu, Z. Dai, and Z. Jiang, “Effect of concentration of the Er3+ ion on electromagnetically induced transparency in Er3+:YAG crystal,” Phys. Lett. A 294, 19–25 (2002). [CrossRef]
  18. H.-F. Zhang, J.-H. Wu, X.-M. Su, and J.-Y. Gao, “Quantum-interference effects on the index of refraction in an Er3+-doped yttrium aluminum garnet crystal,” Phys. Rev. A 66, 053816 (2002). [CrossRef]
  19. G. S. Agarwal, T. N. Dey, and S. Menon, “Knob for changing light propagation from subluminal to superluminal,” Phys. Rev. A 64, 053809 (2001). [CrossRef]
  20. A. D. Wilson-Gordon and H. Friedmann, “Positive and negative dispersion in a three-level A system driven by a single pump,” J. Mod. Opt. 49, 125–139 (2002). [CrossRef]
  21. D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Phase control of group velocity: from subluminal to superluminal light propagation,” Phys. Rev. A 63, 043818 (2001). [CrossRef]
  22. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003). [CrossRef] [PubMed]
  23. G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000). [CrossRef] [PubMed]
  24. A. M. Steinberg and R. Y. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49, 2071–2075 (1994). [CrossRef] [PubMed]
  25. M. W. Mitchell and R. Y. Chiao, “Causality and negative group delay in a simple bandpass amplifier,” Am. J. Phys. 66, 14–19 (1998). [CrossRef]
  26. A. M. Akulshin, S. Barreiro, and A. Lezama, “Steep anomalous dispersion in coherently prepared Rb vapor,” Phys. Rev. Lett. 83, 4277–4280 (1999). [CrossRef]
  27. K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2597 (1991). [CrossRef] [PubMed]
  28. Q. Y. Wang, S. Y. Zhang, and Y. Q. Jia, “Effect of the concentration of the Er3+ ion on the spectral intensity parameters of Er:YAG crystals,” J. Alloys Compd. 202, 1–5 (1993). [CrossRef]
  29. V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5O12:Er3+ crystals,” Sov. J. Quantum Electron. 16, 274–276 (1986). [CrossRef]
  30. Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, “Recent progress in developing new rare earth materials for hole burning and coherent transient applications,” J. Lumin. 98, 281–287 (2002). [CrossRef]
  31. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962). [CrossRef]
  32. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962). [CrossRef]
  33. A. A. Kaminskii, V. S. Mironov, A. Kornienko, S. N. Bagaev, G. Bouion, A. Breniir, and B. Di. Bartoio, “New laser properties and spectroscopy of orthorhombic crystals YalO3:Er3+,” Phys. Status Solidi A 151, 231–235 (1995). [CrossRef]
  34. K. A. Gschneidner and L. Eyring, Handbook on the Physics and Chemistry of Rare Earths (Elsevier Science, New York, 1984), Vol. 5, p. 320.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited