OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 8 — Aug. 1, 2004
  • pp: 1431–1436

Improved symmetry analysis of many-moded microstructure optical fibers

John M. Fini  »View Author Affiliations

JOSA B, Vol. 21, Issue 8, pp. 1431-1436 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (449 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Various methods for simulating microstructure fibers have incorporated symmetry for improved efficiency and discrimination of nearly degenerate modes. A revision of the previously used symmetry-class implementations is proposed, with a more efficient partition of the degenerate classes. Advantages demonstrated using a multipole calculation should apply to finite-element and other simulation methods.

© 2004 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(230.3990) Optical devices : Micro-optical devices

John M. Fini, "Improved symmetry analysis of many-moded microstructure optical fibers," J. Opt. Soc. Am. B 21, 1431-1436 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Kaiser and H. W. Astle, “Low-loss single-matrial fibers made from pure fused silica,” Bell Syst. Tech. J. 53, 1021–1039 (1974). [CrossRef]
  2. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196–1201 (1978). [CrossRef]
  3. T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997). [CrossRef] [PubMed]
  4. N. Venkataraman, M. T. Gallagher, C. M. Smith, D. Müller, J. A. West, K. W. Koch, and J. C. Fajardo, “Low loss (13 db/km) air core photonic band-gap fibre,” presented at the 28th European Conference on Optical Communication, Copenhagen, Denmark, September, 8–12, 2002.
  5. K. Tajima, J. Zhou, K. Kurokawa, and K. Nakajima, “Low water peak photonic crystal fibres,” presented at the 29th European Conference on Optical Communication, Rimini, Italy, September 22–24, 2003, paper Th4.1.6.
  6. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, and J. L. Hall, “Direct link between microwave and optical frequencies with a 300 thz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000). [CrossRef] [PubMed]
  7. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: an efficient modal model,” J. Lightwave Technol. 17, 1093–1102 (1999). [CrossRef]
  8. D. Müller, D. C. Allan, N. F. Borrelli, K. T. Gahagan, M. T. Gallagher, C. M. Smith, N. Venkataraman, and K. W. Koch, “Measurement of photonic band-gap fiber transmission from 1 to 3 μm and impact of surface mode coupling,” in Quantum Electronics and Lases Science, Vol. 89 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper QTuL2.
  9. M. J. Steel, T. P. White, and L. C. Botten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett. 26, 488–490 (2001). [CrossRef]
  10. N. A. Issa and L. Poladian, “Vector wave expansion method for leaky modes of microstructured optical fibers,” J. Lightwave Technol. 21, 1005–1012 (2003). [CrossRef]
  11. A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey-fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett. 14, 1530–1532 (2002). [CrossRef]
  12. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andrés, “Full vector analysis of a realistic photonic crystal fiber,” Opt. Lett. 24, 276–278 (1999). [CrossRef]
  13. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. deSterke, and R. C. McPhedran, “Multipole methods for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2341 (2002). [CrossRef]
  14. N. Guan, S. Habu, K. Takenaga, K. Himeno, and A. Wada, “Boundary element method for analysis of holey optical fibers,” J. Lightwave Technol. 21, 1787–1792 (2003). [CrossRef]
  15. P. R. McIsaac, “Symmetry-induced modal characteristics of uniform waveguides. I. Summary of results,” IEEE Trans. Microwave Theory Tech. 23, 421–429 (1975). [CrossRef]
  16. C. Vassalo, “Circular Fourier analysis of full Maxwell equations for arbitrarily shaped dielectric waveguides—application to gain factors of semiconductor laser waveguides,” J. Lightwave Technol. 8, 1723–1729 (1990). [CrossRef]
  17. A. Peyrilloux, T. Chartier, A. Hideur, L. Berthelot, G. Mélin, S. Lempereur, D. Pagnoux, and P. Roy, “Theoretical and experimental study of the birefringence of a photonic crystal fiber,” J. Lightwave Technol. 21, 536–539 (2003). [CrossRef]
  18. J. Jasapara, R. Bise, T. Her, and J. Nicholson, “Effect of mode cut-off on dispersion in photonic bandgap fibers,” Optical Fiber Communication Conference, Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper ThI3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited