OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 8 — Aug. 1, 2004
  • pp: 1437–1442

Numerical solution of the power flow equation in step-index plastic optical fibers

Alexandar Djordjevich and Svetislav Savović  »View Author Affiliations

JOSA B, Vol. 21, Issue 8, pp. 1437-1442 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (153 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The numerical solution of the complete power flow equation is reported and employed to investigate the state of mode coupling along a step-index plastic optical fiber. This solution is based on the explicit finite-difference method and, in contrast to earlier solutions, does not neglect absorption and scattering loss. It is the only solution that can accommodate any input condition throughout the entire range of feasible input angles without the need for restriction to those angles that are sufficiently far away from critical. Our results for the field patterns at different locations along one type of fiber are in agreement with reported measurements earlier. Furthermore, the length of fiber required for achieving a steady-state mode distribution matches the analytical solution that is available for such distribution as a special case. Mode coupling in plastic fibers is known to affect fiber-optic power delivery, data transmission, and sensing systems.

© 2004 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties

Alexandar Djordjevich and Svetislav Savović, "Numerical solution of the power flow equation in step-index plastic optical fibers," J. Opt. Soc. Am. B 21, 1437-1442 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Ishigure, M. Kano, and Y. Koike, “Which is a more serious factor to the bandwidth of GI POF: differential mode attenuation or mode coupling?” J. Lightwave Technol. 18, 959–965 (2000). [CrossRef]
  2. S. E. Golowich, W. White, W. A. Reed, and E. Knudsen, “Quantitative estimates of mode coupling and differential modal attenuation in perfluorinated graded-index plastic optical fiber,” J. Lightwave Technol. 21, 111–121 (2003). [CrossRef]
  3. D. Hanson, “Wiring with plastic,” IEEE Lightwave Commun. Syst. 3, 34–39 (1992).
  4. P. E. Green, Jr., “Optical networking update,” IEEE J. Sel. Areas Commun. 14, 764–779 (1996). [CrossRef]
  5. C. Koeppen, R. F. Shi, W. D. Chen, and A. F. Garito, “Properties of plastic optical fibers,” J. Opt. Soc. Am. B 15, 727–739 (1998). [CrossRef]
  6. K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators 82, 40–60 (2000). [CrossRef]
  7. A. F. Garito, J. Wang, and R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962–967 (1998). [CrossRef] [PubMed]
  8. M. J. Yadlowsky and A. R. Mickelson, “Distributed loss and mode coupling and their effect on time-dependent propagation in multimode fibers,” Appl. Opt. 32, 6664–6677 (1993). [CrossRef] [PubMed]
  9. M. A. Losada, I. Garcés, J. Mateo, I. Salinas, J. Lou, and J. Zubía, “Mode coupling contribution to radiation losses in curvatures for high and low numerical aperture plastic optical fibers,” J. Lightwave Technol. 20, 1160–1164 (2002). [CrossRef]
  10. A. Djordjevich, M. Fung, and R. Y. K. Fung, “Principles of deflection-curvature measurement,” Meas. Sci. Technol. 12, 1983–1989 (2001). [CrossRef]
  11. M. Eve and J. H. Hannay, “Ray theory and random mode coupling in an optical fibre waveguide. I,” Opt. Quantum Electron. 8, 503–508 (1976). [CrossRef]
  12. D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51, 1767–1783 (1972). [CrossRef]
  13. W. A. Gambling, D. N. Payne, and H. Matsumura, “Mode conversion coefficients in optical fibers,” Appl. Opt. 14, 1538–1542 (1975). [CrossRef] [PubMed]
  14. M. Rousseau and L. Jeunhomme, “Numerical solution of the coupled-power equation in step index optical fibers,” IEEE Trans. Microwave Theory Tech. 25, 577–585 (1977). [CrossRef]
  15. A. Djordjevich and S. Savović, “Investigation of mode coupling in step index plastic optical fibers using the power flow equation,” IEEE Photonics Technol. Lett. 12, 1489–1491 (2000). [CrossRef]
  16. S. Savović and A. Djordjevich, “Optical power flow in plastic clad silica fibers,” Appl. Opt. 41, 7588–7591 (2002). [CrossRef]
  17. J. Zubia, G. Durana, G. Aldabaldetreku, J. Arrue, M. A. Losada, and M. Lopez-Higuera, “New method to calculate mode conversion coefficients in SI multimode optical fibers,” J. Lightwave Technol. 21, 776–781 (2003). [CrossRef]
  18. S. Savović and A. Djordjevich, “Solution of mode coupling in step-index optical fibers by the Fokker–Planck equation and the Langevin equation,” Appl. Opt. 41, 2826–2830 (2002). [CrossRef]
  19. L. Jeunhomme, M. Fraise, and J. P. Pocholle, “Propagation model for long step-index optical fibers,” Appl. Opt. 15, 3040–3046 (1976). [CrossRef] [PubMed]
  20. J. D. Anderson, Computational Fluid Dynamics (McGraw-Hill, New York, 1995).
  21. J. Dugas and G. Maurel, “Mode-coupling processes in poly(methyl methacrylate)-core optical fibers,” Appl. Opt. 31, 5069–5079 (1992). [CrossRef] [PubMed]
  22. S. Savović and A. Djordjevich, “Influence of numerical aperture on mode coupling in step index plastic optical fibers,” submitted to Appl. Opt.
  23. G. Jiang, R. F. Shi, and A. F. Garito, “Mode coupling and equilibrium mode distribution conditions in plastic optical fibers,” IEEE Photonics Technol. Lett. 9, 1128–1130 (1997). [CrossRef]
  24. V. Ruddy and G. Shaw, “Mode coupling in large-diameter polymer-clad silica fibers,” Appl. Opt. 34, 1003–1006 (1995). [CrossRef] [PubMed]
  25. E. L. Chinnock, L. G. Cohen, W. S. Holden, R. D. Standley, and D. B. Keck, “The length dependence of pulse spreading in the CGW-Bell-10 optical fiber,” Proc. IEEE 61, 1499–1500 (1973). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited