OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 8 — Aug. 1, 2004
  • pp: 1443–1451

Holographic data storage: optimized scheduling using the nonlocal polymerization-driven diffusion model

John T. Sheridan, Feidhlim T. O'Neill, and John V. Kelly  »View Author Affiliations


JOSA B, Vol. 21, Issue 8, pp. 1443-1451 (2004)
http://dx.doi.org/10.1364/JOSAB.21.001443


View Full Text Article

Acrobat PDF (391 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The choice of an exposure schedule that maximizes the uniformity and capacity of a holographic recording medium is of critical importance in ensuring the optimum performance of any potential holographic data storage scheme. We propose a methodology to identify an optimum exposure schedule for photopolymer materials governed by the nonlocal polymerization-driven diffusion model. Using this model, the relationship between the material properties (nonlocality and nonlinearity), the recording conditions and the schedule are clarified. In this way, we provide a first-order comparison of the behavior of particular classes of photopolymer materials for use as holographic storage media. We demonstrate, using the nonlocal polymerization-driven diffusion model, that the exposure schedule is independent of the number of gratings to be recorded and that the optimum schedule may necessitate leaving unpolymerized monomer at the end of the recording process.

© 2004 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1950) Diffraction and gratings : Diffraction gratings
(050.7330) Diffraction and gratings : Volume gratings
(090.0090) Holography : Holography
(090.2900) Holography : Optical storage materials
(090.4220) Holography : Multiplex holography
(090.5640) Holography : Rainbow holography
(090.7330) Holography : Volume gratings
(160.4890) Materials : Organic materials
(160.5470) Materials : Polymers
(210.0210) Optical data storage : Optical data storage
(210.2860) Optical data storage : Holographic and volume memories
(210.4810) Optical data storage : Optical storage-recording materials

Citation
John T. Sheridan, Feidhlim T. O'Neill, and John V. Kelly, "Holographic data storage: optimized scheduling using the nonlocal polymerization-driven diffusion model," J. Opt. Soc. Am. B 21, 1443-1451 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-8-1443


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. Manivannan and R. A. Lessard, “Trends in holographic recording materials,” Trends Polym. Sci. 2, 282–290 (1994).
  2. J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449–463 (2001).
  3. L. Dhar, A. Hale, H. E. Katz, L. Schilling, M. G. Schnoes, and F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett. 24, 487–489 (1999).
  4. M. G. Schnoes, L. Dhar, M. L. Schilling, S. S. Patel, and P. Wiltzius, “Photopolymer-filled nanoporous glass as a dimensionally stable holographic recording medium,” Opt. Lett. 24, 658–660 (1999).
  5. A. Pu and D. Psaltis, “High density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389–2398 (1996).
  6. L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, and A. Harris, “Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems,” Opt. Lett. 23, 1710–1712 (1998).
  7. R. R. A. Syms, Practical Volume Holography (Oxford University, Oxford, 1991).
  8. S.-D. Wu and E. N. Glytsis, “Holographic grating formation in photopolymers: analysis and experimental results based on a nonlocal diffusion model and rigorous coupled-wave analysis,” J. Opt. Soc. Am. B 20, 1177–1188 (2003).
  9. A. Sato, M. Scepanovic, and R. Kostuk, “Holographic edge-illuminated polymer Bragg gratings for dense wavelength division optical filters at 1550 nm,” Appl. Opt. 42, 778–784 (2003).
  10. W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: The inPhase Technologies demonstration platform,” Proc. SPIE 5216, 178–191 (2003).
  11. G. J. Steckman, A. Pu, and D. Psaltis, “Storage density of shift-multiplexed holographic memory,” Appl. Opt. 40, 3387–3394 (2001).
  12. T. Tanaka and S. Kawata, “Comparison of recording densities in three-dimensional optical storage systems: multilayered bit recording versus angularly multiplexed holographic recording,” J. Opt. Soc. Am. A 13, 935–943 (1996).
  13. J. T. Sheridan and J. R. Lawrence, “Nonlocal response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000).
  14. J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B 19, 621–629 (2002).
  15. F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Comparison of holographic photopolymer materials using analytic nonlocal diffusion models,” Appl. Opt. 41, 845–852 (2002).
  16. F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Comparison of holographic photopolymer materials using analytic nonlocal diffusion models: errata,” Appl. Opt. 42, 3435 (2003).
  17. C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835–1855 (2003).
  18. C. Neipp, A. Beléndez, J. T. Sheridan, J. V. Kelly, F. T. O’Neill, S. Gallego, M. Ortuño, and I. Pascual, “Nonlocal polymerization driven diffusion based model: general dependence of the polymerization rate to the exposure intensity,” Opt. Express 11, 1876–1886 (2003).
  19. J. T. Sheridan, F. T. O’Neill, and J. V. Kelly, “Photopolymer holographic materials: the nonlocal diffusion model,” in Photorefractive Effects, Materials, and Devices, P. Delaye, C. Denz, L. Mager, and G. Montemezzani, eds., Vol. 87 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2003), pp. 206–212.
  20. J. V. Kelly, F. T. O’Neill, and J. T. Sheridan, “Holographic photopolymer materials with nonlocal and nonlinear response,” Proc. SPIE 5216, 127–138 (2003).
  21. J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material parameter estimation using a non-local diffusion based model,” J. Appl. Phys. 90, 3142–3148 (2001).
  22. S. Piazzolla and B. K. Jenkins, “First-harmonic diffusion model for holographic grating formation in photopolymers,” J. Opt. Soc. Am. B 17, 1147–1157 (2000).
  23. F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Improvement of holographic recording material using aerosol sealant,” J. Opt. A 3, 20–25 (2001).
  24. A. Vardy, M. Blaum, P. H. Siegel, and G. T. Sincerbox, “Conservative arrays: multidimensional modulation codes for holographic recording,” IEEE Trans. Inf. Theory 42, 227–230 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited