OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 8 — Aug. 1, 2004
  • pp: 1452–1462

Diffused Ti:sapphire channel-waveguide lasers

Louise M. B. Hickey, Vasilis Apostolopoulos, Robert W. Eason, James S. Wilkinson, and Andrew A. Anderson  »View Author Affiliations

JOSA B, Vol. 21, Issue 8, pp. 1452-1462 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (414 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The fabrication and operation of Ti:sapphire channel-waveguide lasers is presented, in which both the gain medium and the waveguide are formed by the thermal diffusion of titanium. Lasing was observed between wavelengths of 775 nm and 821 nm, with the lowest launched pump-power threshold being 210±40 mW for a pump wavelength of 514.5 nm.

© 2004 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.3590) Lasers and laser optics : Lasers, titanium

Louise M. B. Hickey, Vasilis Apostolopoulos, Robert W. Eason, James S. Wilkinson, and Andrew A. Anderson, "Diffused Ti:sapphire channel-waveguide lasers," J. Opt. Soc. Am. B 21, 1452-1462 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Schafer, I. Baumann, W. Sohler, H. Suche, and S. Westenhofer, “Diode-pumped and packaged acousto-optically tunable Ti:Er:LiNbO3 waveguide laser of wide tuning range,” J. Lightwave Technol. 33, 1636–1641 (1997).
  2. J. Amin, M. Hempstead, J. E. Román, and J. S. Wilkinson, “Tunable coupled-cavity waveguide laser at room temperature in Nd-diffused Ti:LiNbO3,” Opt. Lett. 19, 1541–1543 (1994). [CrossRef] [PubMed]
  3. M. Oguma, T. Kitagawa, K. Hattori, and M. Horiguchi, “Tunable Er-doped Y-branched waveguide laser,” IEEE Photon. Technol. Lett. 6, 586–587 (1994). [CrossRef]
  4. For example, the Coherent 890 or 899 Ti:sapphire lasers.
  5. P. F. Moulton, “Spectroscopic properties and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986). [CrossRef]
  6. J. Harrison, A. Finch, D. M. Rines, G. A. Rines, and P. F. Moulton, “Low-threshold, cw, all-solid-state Ti:Al2O3 laser,” Opt. Lett. 16, 581–583 (1991). [CrossRef] [PubMed]
  7. N. F. Naumenko and I. S. Didenko, “High-velocity surface acoustic waves in diamond and sapphire with zinc oxide film,” Appl. Phys. Lett. 75, 3029–3031 (1999). [CrossRef]
  8. F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386, 351–359 (1997). [CrossRef]
  9. N. Yasuharu, “Formation of titanium-sapphire single crystal film,” Yokogawa Electric Corp., Japanese patent 04068589 (March 26, 1992); M. Akihiro, “Production of titanium sapphire,” Yokogawa Electric Corp., Japanese patent 03035954 (January 3, 1991).
  10. M. Mahnke, S. Weichmann, H. J. Heider, O. Blume, and J. Müller, “Aluminum oxide doped with erbium, titanium and chromium for active integrated optical applications,” Int. J. Electron. Commun. (AEÜ) 55, 342–348 (2001). [CrossRef]
  11. J. C. McCallum and L. D. Morpeth, “Synthesis of Ti:sapphire by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 148, 726–729 (1999). [CrossRef]
  12. H. Naramoto, C. W. White, J. M. Williams, C. J. McHargue, O. W. Holland, M. M. Abraham, and B. R. Appleton, “Ion implantation and thermal anealing of α-Al2O3 single crystals,” J. Appl. Phys. 54, 683–698 (1983). [CrossRef]
  13. B. R. Appleton, H. Naramoto, C. W. White, O. W. Holland, C. J. McHargue, G. Farlow, J. Narayan, and J. M. Williams, “Ion implantation, ion beam mixing, and annealing studies of metals in Al2O3, SiC and Si3N4,” Nucl. Instrum. Methods Phys. Res. B 1, 167–175 (1984). [CrossRef]
  14. A. Anderson, R. W. Eason, M. Jelinek, C. Grivas, D. Lane, K. Rogers, L. M. B. Hickey, and C. Fotakis, “Growth of single crystal thin films by pulsed laser deposition,” Thin Solid Films 300, 68–71 (1997). [CrossRef]
  15. P. E. Dyer, S. R. Jackson, P. H. Key, W. J. Metheringham, and M. J. J. Schmidt, “Excimer laser ablation and film deposition of Ti:sapphire,” Appl. Surf. Sci. 96–98, 849–854 (1996). [CrossRef]
  16. H. Uetsuhara, S. Goto, Y. Nakata, N. Vasa, T. Okada, and M. Maeda, “Fabrication of a Ti:sapphire planar waveguide by pulsed laser deposition,” Appl. Phys. A 69, S719–S722 (1999). [CrossRef]
  17. P. Manoravi, P. R. Willmott, J. R. Huber, and T. Greber, “Deposition of Ti:sapphire thin films by reactive pulsed laser ablation using liquid metals and oxygen,” Appl. Phys. A 69, S865–S867 (1999). [CrossRef]
  18. L. M. B. Hickey, “Titanium:sapphire waveguide laser by the thermal diffusion of Ti into sapphire,” Ph.D dissertation (University of Southampton, Southampton UK, 1998).
  19. L. G. Deshazer, K. W. Kangas, R. Route, and R. S. Feigelson, “Tunable titanium doped sapphire fiber laser,” Proc. SPIE 843, 118 (1987). [CrossRef]
  20. L. S. Wu, A. M. Wang, J. M. Wu, L. Wei, G. X. Zhu, and S. Ying, “Growth and laser properties of Ti:sapphire single crystal fibres,” Electron. Lett. 31, 1151–1152 (1995). [CrossRef]
  21. A. Anderson, R. W. Eason, L. M. B. Hickey, M. Jelinek, C. Grivas, D. S. Gill, and N. Vainos, “Ti:sapphire planar waveguide laser grown by pulsed laser deposition,” Opt. Lett. 22, 1556–1558 (1997). [CrossRef]
  22. L. M. B. Hickey, A. A. Anderson, and J. S. Wilkinson, “Ti-sapphire channel waveguide laser by thermal diffusion of titanium into sapphire,” Postdeadline Addendum to Digest of the Eighth European Conference on Integrated Optics (Optical Society of America, Washington D.C., 1997), paper PD6, pp. 1–4.
  23. I. Baumann, S. Bosso, R. Brinkmann, R. Corsini, M. Dinand, A. Greiner, K. Schafer, J. Sochtig, W. Sohler, H. Suche, and R. Wessel, “Er-doped integrated optical devices in LiNbO3,” IEEE J. Sel. Top. Quantum Electron. 2, 335–365 (1996). [CrossRef]
  24. R. L. Aggarwal, A. Sanchez, R. E. Fahey, and A. J. Strauss, “Magnetic and optical measurements on Ti:Al2O3 crystal for laser applications: concentration and absorption cross section of Ti3+ ions,” Appl. Phys. Lett. 48, 1345–1347 (1986). [CrossRef]
  25. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986). [CrossRef]
  26. P. Albers, E. Stark, and G. Huber, “Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire,” J. Opt. Soc. Am. B 3, 134–139 (1986). [CrossRef]
  27. A. Sanchez, A. J. Strauss, R. L. Aggarwal, and R. E. Fahey, “Crystal growth spectroscopy and laser characteristics of Ti:Al2O3,” IEEE J. Quantum Electron. 24, 995–1002 (1988). [CrossRef]
  28. P. Lacovara and L. Esterowitz, “Growth, spectroscopy and lasing of titanium doped sapphire,” IEEE J. Quantum Electron. QE-21, 1614–1618 (1985). [CrossRef]
  29. R. L. Aggarwal, A. Sanchez, M. M. Stuppi, R. E. Fahey, A. J. Strauss, W. R. Rapoport, and C. P. Khattak, “Residual infrared absorption in As-grown and annealed crystals of Ti:Al2O3,” IEEE J. Quantum Electron. 24, 1003–1008 (1988). [CrossRef]
  30. Union Carbide Corporation.
  31. T. Y. Fan and R. L. Byer, “Modeling and cw operation of a quasi-three-level 946-nm Nd:YAG Laser,” IEEE J. Quantum Electron. 23, 605–612 (1987). [CrossRef]
  32. B. Gu, M. Birnbaum, B. Leong, and M. Bass, “Material characteristics of titanium:sapphire,” J. Opt. Soc. Am. B 6, 2338–2341 (1989). [CrossRef]
  33. R. V. Schmidt and I. P. Kaminow, “Metal-diffused opticalwaveguides in LiNbO3,” Appl. Phys. Lett. 25, 458–460 (1974). [CrossRef]
  34. W. R. Rapoport and C. P. Khattak, “Titanium sapphire laser characteristics,” Appl. Opt. 27, 2677–2684 (1988). [CrossRef] [PubMed]
  35. R. Moncorgé, G. Boulon, D. Vivien, A. M. Lejus, R. Collongues, V. Djévahirdjian, and R. Cagnard, “Optical properties and tunable laser action of Verneuil-grown single crystals of Al2O3:Ti3+,” IEEE J. Quantum Electron. 24, 1049–1051 (1988). [CrossRef]
  36. W. P. Risk, “Modelling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5, 1412–1423 (1988). [CrossRef]
  37. H. K. Pulker, G. Paesold, and E. Ritter, “Refractive indices of TiO2 films produced by reactive evaporation of various titanium-oxygen phases,” Appl. Opt. 15, 2986–2991 (1976). [CrossRef] [PubMed]
  38. L. M. B. Hickey, G. R. Quigley, J. S. Wilkinson, E. G. Moya, F. Moya, and C. Grattepain, “Ti-diffusion in sapphire for active and passive waveguide devices,” Conference on Lasers and Electro-Optics Europe OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 264.
  39. L. M. B. Hickey and J. S. Wilkinson, “Titanium diffused waveguides in sapphire,” Electron. Lett. 32, 2238–2239 (1996). [CrossRef]
  40. I. T. McKinnie, A. L. Oien, D. M. Warrington, P. N. Tonga, L. A. W. Gloster, and T. A. King, “Ti3+ ion concentration and Ti:sapphire laser performance,” IEEE J. Quantum Electron. 33, 1221–1230 (1997). [CrossRef]
  41. V. Apostolopoulos, L. M. B. Hickey, D. A. Sager, and J. S. Wilkinson, “Gallium-diffused waveguides in sapphire,” Opt. Lett. 26, 1586–1588 (2001). [CrossRef]
  42. H. Malitson, “Refraction and dispersion of synthetic sapphire,” J. Opt. Soc. Am. A 52, 1377–1379 (1962). [CrossRef]
  43. J. Tapping and M. L. Reilly, “Index of refraction of sapphire between 24 and 1060 °C for wavelengths of 633 and 799 nm,” J. Opt. Soc. Am. A 3, 610 (1986). [CrossRef]
  44. M. A. Jepperson, “Some optical, thermo-optical and piezo-optical properties of synthetic sapphire,” J. Opt. Soc. Am. 48, 629–632 (1958). [CrossRef]
  45. C. DeFranzo and B. G. Pazol, “Index of refraction measurement on sapphire at low temperatures and visible wavelengths,” Appl. Opt. 32, 2224–2234 (1993). [CrossRef] [PubMed]
  46. S. McClure, “Optical spectra of transition metal ions in corundum,” J. Phys. Chem. 36, 2757–2779 (1962). [CrossRef]
  47. R. Moon and M. R. Philips, “Defect clustering and color in Fe, Ti:α-Al2O3,” J. Am. Ceram. Soc. 2, 356–367 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited