OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 8 — Aug. 1, 2004
  • pp: 1500–1508

Ultrafast optical tuning of a superprism effect in nonlinear photonic crystals

Nicolae C. Panoiu, Mayank Bahl, and Richard M. Osgood, Jr.  »View Author Affiliations


JOSA B, Vol. 21, Issue 8, pp. 1500-1508 (2004)
http://dx.doi.org/10.1364/JOSAB.21.001500


View Full Text Article

Enhanced HTML    Acrobat PDF (279 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A comprehensive analysis of an optically tunable superprism effect in a two-dimensional nonlinear photonic crystal is presented. We demonstrate that, under certain circumstances, if one modifies the band structure of the crystal through the Kerr effect induced by a pump beam, the refraction angle of the transmitted signal beam can be tuned over tens of degrees. Two complementary geometries are considered, namely, air holes in a dielectric background and dielectric rods surrounded by air, and in both cases the TE and TM polarizations are studied. We also show that, because of the slow light effect, in both cases the optical power required to tune the refracted angle is dramatically reduced if the frequency of the pump beam is close to a photonic bandgap edge.

© 2004 Optical Society of America

OCIS Codes
(130.4310) Integrated optics : Nonlinear
(190.3270) Nonlinear optics : Kerr effect
(190.4360) Nonlinear optics : Nonlinear optics, devices
(230.4320) Optical devices : Nonlinear optical devices

Citation
Nicolae C. Panoiu, Mayank Bahl, and Richard M. Osgood, Jr., "Ultrafast optical tuning of a superprism effect in nonlinear photonic crystals," J. Opt. Soc. Am. B 21, 1500-1508 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-8-1500


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef] [PubMed]
  3. E. Yablonovitch and T. J. Gmitter, “Photonic band structure: the face-centered-cubic case,” Phys. Rev. Lett. 63, 1950–1953 (1989). [CrossRef] [PubMed]
  4. J. Martorell and N. M. Lawandy, “Observation of inhibited spontaneous emission in a periodic dielectric structure,” Phys. Rev. Lett. 65, 1877–1880 (1990). [CrossRef] [PubMed]
  5. S. John and J. Wang, “Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms,” Phys. Rev. Lett. 64, 2418–2421 (1990). [CrossRef] [PubMed]
  6. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996). [CrossRef] [PubMed]
  7. A. Mekis, S. Fan, and J. D. Joannopoulos, “Bound states in photonic crystal waveguides and waveguide bends,” Phys. Rev. B 58, 4809–4817 (1998). [CrossRef]
  8. S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998). [CrossRef] [PubMed]
  9. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960–963 (1998). [CrossRef]
  10. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature (London) 407, 608–610 (2000). [CrossRef]
  11. M. J. Steel, M. Levy, and R. M. Osgood, “High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects,” IEEE Photonics Technol. Lett. 12, 1171–1173 (2000). [CrossRef]
  12. M. J. Steel, M. Levy, and R. M. Osgood, “Large magnetooptical Kerr rotation with high reflectivity from photonic bandgap structures with defects,” J. Lightwave Technol. 18, 1289–1296 (2000). [CrossRef]
  13. M. J. Steel, M. Levy, and R. M. Osgood, “Photonic bandgaps with defects and the enhancement of Faraday rotation,” J. Lightwave Technol. 18, 1297–1308 (2000). [CrossRef]
  14. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994). [CrossRef]
  15. S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Elimination of crosstalk in waveguide intersections,” Opt. Lett. 23, 1855–1857 (1998). [CrossRef]
  16. B. D’Urso, O. Painter, J. O’Brian, T. Tombrello, A. Yariv, and A. Scherer, “Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities,” J. Opt. Soc. Am. B 15, 1155–1159 (1998). [CrossRef]
  17. O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–285 (1999). [CrossRef]
  18. S. Y. Lin, V. M. Hietala, L. Wang, and E. D. Jones, “Highly dispersive photonic band-gap prism,” Opt. Lett. 21, 1771–1773 (1996). [CrossRef] [PubMed]
  19. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998). [CrossRef]
  20. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999). [CrossRef]
  21. T. Baba and M. Nakamura, “Photonic crystal light deflection devices using the superprism effect,” IEEE J. Quantum Electron. 38, 909–914 (2002). [CrossRef]
  22. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals: toward microscale lightwave circuits,” J. Lightwave Technol. 17, 2032–2038 (1999). [CrossRef]
  23. L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, “Superprism phenomena in planar photonic crystals,” IEEE J. Quantum Electron. 38, 915–918 (2002). [CrossRef]
  24. K. B. Chung and S. W. Hong, “Wavelength demultiplexers based on the superprism phenomena in photonic crystals,” Appl. Phys. Lett. 81, 1549–1551 (2002). [CrossRef]
  25. K. Bush and S. John, “Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970 (1999). [CrossRef]
  26. D. Scrymgeour, N. Malkova, S. Kim, and V. Gopalan, “Electro-optic control of the superprism effect in photonic crystals,” Appl. Phys. Lett. 82, 3176–3178 (2003). [CrossRef]
  27. K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75, 932–934 (1999). [CrossRef]
  28. P. Halevi and F. R. Mendieta, “Tunable photonic crystals with semiconducting constituents,” Phys. Rev. Lett. 85, 1875–1878 (2000). [CrossRef] [PubMed]
  29. N. C. Panoiu, M. Bahl, and R. M. Osgood, “Optically tunable superprism effect in nonlinear photonic crystals,” Opt. Lett. 28, 2503–2505 (2003). [CrossRef] [PubMed]
  30. M. Soljacic, C. Luo, J. D. Joannopoulos, and S. Fan, “Nonlinear photonic crystal microdevices for optical integration,” Opt. Lett. 28, 637–639 (2003). [CrossRef] [PubMed]
  31. M. Bahl, N. C. Panoiu, and R. M. Osgood, “Nonlinear optical effects in a two-dimensional photonic crystal containing one-dimensional Kerr defects,” Phys. Rev. E 67, 056604 (2003). [CrossRef]
  32. W. Park and C. J. Summers, “Extraordinary refraction and dispersion in two-dimensional photonic crystal slabs,” Opt. Lett. 27, 1397–1399 (2002). [CrossRef]
  33. D. Peyrade, J. Torres, D. Coquillat, R. Legros, J. P. Lascaray, Y. Chen, L. M. Ferlazzo, S. Ruffenach, O. Briot, M. d’Yerville, E. Centeno, D. Cassagne, and J. P. Albert, “Equifrequency surfaces in GaN/sapphire photonic crystals,” Photonics Spectra 17, 423–425 (2003).
  34. K. M. Ho, K. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990). [CrossRef] [PubMed]
  35. V. Lousse and J. P. Vigneron, “Self-consistent photonic band structure of dielectric superlattices containing nonlinear optical materials,” Phys. Rev. E 63, 027602 (2001). [CrossRef]
  36. RSoft Design Group, http://www.rsoftdesign.com.
  37. R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48, 8434–8437 (1993). [CrossRef]
  38. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Berlin, Germany, 2001).
  39. N. C. Panoiu, M. Bahl, and R. M. Osgood, “All-optical tunability of a nonlinear photonic crystal channel drop filter,” Opt. Exp. 12, 1605–1610 (2004), http://www.opticsexpress.org. [CrossRef]
  40. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000). [CrossRef]
  41. M. Straub, M. Ventura, and M. Gu, “Multiple higher-order stop gaps in infrared polymer photonic crystals,” Phys. Rev. Lett. 91, 043901 (2003). [CrossRef] [PubMed]
  42. A. D. Bristow, J. P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, “Ultrafast nonlinear response of AlGaAs two-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 83, 851–853 (2003). [CrossRef]
  43. Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature (London) 414, 289–293 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited