## Entanglement generation and entropy growth due to intrinsic decoherence in the Jaynes-Cummings model

JOSA B, Vol. 21, Issue 8, pp. 1535-1542 (2004)

http://dx.doi.org/10.1364/JOSAB.21.001535

Acrobat PDF (957 KB)

### Abstract

We study how intrinsic decoherence leads to growing entropy and a strong degradation of the maximal generated entanglement in the multiquanta Jaynes–Cummings model. We find an exact solution of the Milburn equation in multiquanta precesses and calculate the partial entropy of the particle (atom or trapped ion) and field subsystem as well as total entropy. As the total entropy is not conserved, and it is shown to increase as time develops, one cannot use the partial field or atomic entropy as a direct measure of particle–field entanglement. For a good entropy measure, we also calculate the negativity of the eigenvalues of the partially transposed density matrix. We find that, at least qualitatively, the difference of the total entropy to the sum of field and atom partial entropies can be also used as an entanglement measure. Our results show that the degree of entanglement is very sensitive to any change in the intrinsic decoherence parameter.

© 2004 Optical Society of America

**OCIS Codes**

(270.1670) Quantum optics : Coherent optical effects

(270.4180) Quantum optics : Multiphoton processes

(270.5290) Quantum optics : Photon statistics

**Citation**

A.-S. F. Obada and Hosny A. Hessian, "Entanglement generation and entropy growth due to intrinsic decoherence in the Jaynes-Cummings model," J. Opt. Soc. Am. B **21**, 1535-1542 (2004)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-8-1535

Sort: Year | Journal | Reset

### References

- A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic, Dordrecht, The Netherlands, 1993).
- G. Alber, T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, W. Weinfurter, R. Werner, and A. Zeilinger, Quantum Information: An Introduction to Basic Concepts and Experiments, Vol. 173 of Springer Tracts in Modern Physics (Springer, Berlin, 2001).
- C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and K. W. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
- C. H. Bennett and S. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
- M. Hillery, V. Buzseek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, Cambridge, UK, 2000).
- V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, “Quantifying entanglement,” Phys. Rev. Lett. 78, 2275–2279 (1997).
- C. H. Bennett, D. P. Di Vincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
- L. Henderson and V. Vedral, “Information, relative entropy of entanglement, and irreversibility,” Phys. Rev. Lett. 84, 2263–2266 (2000).
- M. Horodecki, P. Horodecki, and R. Horodecki, “Limits for entanglement measures,” Phys. Rev. Lett. 84, 2014–2017 (2000).
- C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996).
- S. J. D. Phoenix and P. L. Knight, “Establishment of an entangled atom-field state in the Jaynes–Cummings model,” Phys. Rev. A 44, 6023–6029 (1991).
- S. J. D. Phoenix and P. L. Knight, “Comment on ‘Collapse and revival of the state vector in the Jaynes–Cummings model: an example of state preparation by a quantum apparatus, ’” Phys. Rev. Lett. 66, 2833 (1991).
- V. Buzseek, H. Moya-Cessa, P. L. Knight, and S. J. D. Phoenix, “Schrödinger-cat states in the resonant Jaynes–Cummings model: collapse and revival of oscillations of the photon-number distribution,” Phys. Rev. A 45, 8190–8203 (1992).
- S. J. D. Phoenix and P. L. Knight, “Periodicity, phase, and entropy in models of two-photon resonance,” J. Opt. Soc. Am. B 7, 116–124 (1990).
- S. J. D. Phoenix and P. L. Knight, “Fluctuation and entropy in models of quantum optical resonance,” Ann. Phys. (N.Y.) 186, 381 (1988).
- J. Gea-Bancloche, “Collapse and revival of the state vector in the Jaynes–Cummings model: an example of state preparation by a quantum apparatus,” Phys. Rev. Lett. 65, 3385–3388 (1990).
- J. Gea-Bancloche, “Atom- and field-state evolution in the Jaynes–Cummings model for large initial fields,” Phys. Rev. A 44, 5913–5931 (1991).
- J. Gea-Bancloche, “A new look at the Jaynes–Cummings model for large fields: Bloch sphere evolution and detuning effects,” Opt. Commun. 88, 531 (1992).
- M. F. Fang and G. H. Zhou, “Influence of atomic coherence on the evolution of field entropy in multiphoton processes,” Phys. Lett. A 184, 397–402 (1994).
- B. W. Shore and P. L. Knight, “The Jaynes–Cummings revival,” in Physics and Probability, W. T. Grandy, Jr. and P. W. Milonni, eds. (Cambridge University, Cambridge, UK, 1993).
- A.-S. F. Obada and M. Abdel-Aty, “Influence of the Stark shift and Kerr-like medium on the evolution of field entropy and entanglement in two-photon processes,” Acta Phys. Pol. B 31, 589–599 (2000).
- M. Abdel-Aty, S. Furuichi, and A.-S. F. Obada, “Entanglement degree of a nonlinear multiphoton Jaynes-Cummings model,” J. Opt. B: Quantum Semiclass. Opt. 4, 37–43 (2002).
- S. Bose, I. Fuentes-Guridi, P. L. Knight, and V. Vedral, “Subsystem purity as an enforcer of entanglement,” Phys. Rev. Lett. 87, 050401 (2001).
- S. Bose, I. Fuentes-Guridi, P. L. Knight, and V. Vedral, “Erratum: Subsystem purity as an enforcer of entanglement [Phys. Rev. Lett. 87, 050401 (2001)],” Phys. Rev. Lett. 87, 279901 (2001).
- S. Scheel, J. Eisert, P. L. Knight, and M. B. Plenio, quant-ph/207120.
- P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Phys. Rev. A 52, R2493–R2496 (1995).
- I. L. Chuang and Y. Yamamoto, “Creation of a persistent quantum bit using error correction,” Phys. Rev. A 55, 114–127 (1997).
- G. C. Ghirardi, A. Rimini, and T. Weber, “Unified dynamics for microscopic and macroscopic systems,” Phys. Rev. D 34, 470–491 (1986).
- C. M. Caves and G. J. Milburn, “Quantum-mechanical model for continuous position measurements,” Phys. Rev. A 36, 5543 (1987).
- L. Disi, “Models for universal reduction of macroscopic quantum fluctuations,” Phys. Rev. A 40, 1165–1174 (1989).
- J. Ellis, S. Mohanty, and D. V. Nanopaulos, “Quantum gravity and the collapse of the wavefunction,” Phys. Lett. B 221, 113 (1989).
- J. Ellis, S. Mohanty, and D. V. Nanopaulos, “Wormholes violate quantum mechanics in SQUIDs,” Phys. Lett. B 235, 305 (1990).
- G. C. Ghirardi, P. Pearle, and A. Rimini, “Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles,” Phys. Rev. A 42, 78–89 (1990).
- G. C. Ghirardi, R. Grassi, and A. Rimini, “Continuous-spontaneous-reduction model involving gravity,” Phys. Rev. A 42, 1057–1064 (1990).
- G. J. Milburn, “Intrinsic decoherence in quantum mechanics,” Phys. Rev. A 44, 5401–5406 (1991).
- G. J. Milburn, “Reply to comment on intrinsic decoherence in quantum mechanics,” Phys. Rev. A 47, 2415–2416 (1993).
- H. Moya-Cessa, V. Buzeek, M. S. Kim, and P. L. Knight, “Intrinsic decoherence in the atom–field interaction,” Phys. Rev. A 48, 3900–3905 (1993).
- A.-S. F. Obada, A. M. Abdel-Hafez, and H. A. Hessian, “Influence of the intrinsic decoherence on nonclassical effects in the nondegenerate bimodal multiquanta Jaynes–Cummings model,” J. Phys. B: At. Mol. Opt. Phys. 31, 5085–5104 (1998).
- R. Omnes, “General theory of the decoherence effect in quantum mechanics,” Phys. Rev. A 56, 3383 (1997).
- M. Brune, E. Hagley, J. Dreyer, X. Matre, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, “Observing the progressive decoherence of the ‘meter’ in a quantum measurement,” Phys. Rev. Lett. 77, 4887 (1996).
- G. Vidal and R. F. Werner, “Computable measure of entanglement,” Phys. Rev. A 65, 032314 (2002).
- C. V. Sukumar and B. Buck, “Multi-phonon generalization of the Jaynes–Cummings model,” Phys. Lett. A 83, 211 (1981).
- H. Araki and E. Lieb, “Entropy inqualities,” Commun. Math. Phys. 18, 160 (1970).
- N. B. Narozhny, J. J. Sanchez-Mondragon, and J. H. Eberly, “Coherence versus incoherence: collapse and revival in a simple quantum model,” Phys. Rev. A 23, 236–247 (1981).
- M. Brune, J. M. Raimond, and S. Haroche, “Theory of the Rydberg-atom two-photon micromaser,” Phys. Rev. A 35, 154–163 (1987).
- L. Davidovich, J. M. Raimond, M. Brune, and S. Haroche, “Quantum theory of a two-photon micromaser,” Phys. Rev. A 36, 3771–3787 (1987).
- M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, “Realization of a two-photon maser oscillator,” Phys. Rev. Lett. 59, 1899–1902 (1987).
- J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon, “Periodic spontaneous collapse and revival in a simple quantum model,” Phys. Rev. Lett. 44, 1323–1326 (1980).
- G. Rempe, H. Walther, and N. Klein, “Observation of quantum collapse and revival in a one-atom maser,” Phys. Rev. Lett. 58, 353–356 (1987).
- D. Meschede, H. Walther, and G. Muller, “One-atom maser,” Phys. Rev. Lett. 54, 551–554 (1985).
- P. Filipowicz, J. Javanainen, and P. Meystre, “Theory of a microscopic maser,” Phys. Rev. A 34, 3077–3087 (1986).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.