OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 9 — Sep. 1, 2004
  • pp: 1606–1619

Increasing the modulation bandwidth of semiconductor-optical-amplifier-based switches by using optical filtering

Mads L. Nielsen and Jesper Mørk  »View Author Affiliations


JOSA B, Vol. 21, Issue 9, pp. 1606-1619 (2004)
http://dx.doi.org/10.1364/JOSAB.21.001606


View Full Text Article

Acrobat PDF (307 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A small-signal analysis of all-optical switches based on a single semiconductor optical amplifier followed by an optical filter is presented. Using the asymmetric Mach–Zehnder interferometer, which is the filter employed in the delayed-interference signal converter, as an example, we explain the principle of modulation bandwidth enhancement using optical filtering. We obtain analytical expressions for the optimum phase bias of the Mach–Zehnder interferometer filter and the resulting optical modulation bandwidth. By adopting a spectral approach, where the small-signal modulated field envelope is analyzed, we are able to generalize these results and calculate the bandwidth enhancement provided by an arbitrary filter.

© 2004 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.5060) Fiber optics and optical communications : Phase modulation
(120.2440) Instrumentation, measurement, and metrology : Filters
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(320.7080) Ultrafast optics : Ultrafast devices

Citation
Mads L. Nielsen and Jesper Mørk, "Increasing the modulation bandwidth of semiconductor-optical-amplifier-based switches by using optical filtering," J. Opt. Soc. Am. B 21, 1606-1619 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-9-1606


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photonics Technol. Lett. 5, 787–790 (1993).
  2. K. Tajima, “All-optical switch with switch-off time unrestricted by carrier lifetime,” Jpn. J. Appl. Phys., Part 1 32, L1746–L1749 (1993).
  3. S. Nakamura, Y. Ueno, and K. Tajima, “Error-free demultiplexing at 336 Gb/s with a hybrid-integrated symmetric Mach–Zehnder switch,” in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper FD3–1.
  4. Y. Ueno, S. Nakamura, H. Hatakeyama, T. Tamanuki, T. Sasaki, and K. Tajima, “168 Gb/s OTDM wavelength conversion using an SMZ-type all-optical switch,” in Proceedings of European Conference on Optical Communication (VDE, Frankfurt, Germany, 2000), Vol. 1, pp. 13–14.
  5. Y. Ueno, S. Nakamura, and K. Tajima, “Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s with symmetrical-Mach–Zehnder-type regenerator,” in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper MG5–1.
  6. Y. Ueno, S. Nakamura, K. Tajima, and S. Kitamura, “3.8 THz wavelength conversion of picosecond pulses using a semiconductor delayed-interference signal-wavelength converter (DISC),” IEEE Photonics Technol. Lett. 10, 346–348 (1998).
  7. J. Leuthold, B. Mikkelsen, G. Raybon, C. H. Joyner, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and R. Behringer, “All-optical wavelength conversion between 10 and 100 Gb/s with SOA delayed-interference configuration,” Opt. Quantum Electron. 33, 939–952 (2001).
  8. H.-Y. Yu, D. Mahgerefteh, P. S. Cho, and J. Goldhar, “Optimization of the frequency response of a semiconductor optical amplifier wavelength converter using a fiber Bragg grating,” J. Lightwave Technol. 17, 308–315 (1999).
  9. P. Öhlen and E. Berglind, “Noise accumulation and BER estimates in concatenated nonlinear optoelectronic repeaters,” IEEE Photonics Technol. Lett. 9, 1011–1013 (1997).
  10. J. Mørk, F. Öhman, and S. Bischoff, “Analytical expression for the bit-error-rate of cascaded all-optical regenerators,” IEEE Photonics Technol. Lett. 15, 1479–1481 (2003).
  11. G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
  12. D. Marcenac and A. Mecozzi, “Switches and frequency converters based on cross-gain modulation in semiconductoroptical amplifiers,” IEEE Photonics Technol. Lett. 9, 749–751 (1997).
  13. T. Durhuus, B. Mikkelsen, C. Jørgensen, S. L. Danielsen, and K. E. Stubkjær, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14, 942–954 (1996).
  14. D. D. Marcenac, A. E. Kelly, and D. Nesset, “Nonlinear optical amplifiers for ultrahigh speed all-optical wavelength conversion,” in Optical Amplifiers and Their Applications, Vol. 5 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 230–235.
  15. R. J. Manning, A. D. Ellis, A. J. Poustie, and K. J. Blow, “Semiconductor laser amplifiers for ultrafast all-optical signal processing,” J. Opt. Soc. Am. B 14, 3204–3216 (1997).
  16. S. Bischoff and J. Mørk, “Reduction of patterning effects in SOA-based all optical switches by using cross-gain modulated holding signal,” in Conference on Lasers and Electro-Optics, Vol. 73 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), Vol. 1, p. 353.
  17. J. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, “Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength,” IEEE Photonics Technol. Lett. 14, 12–14 (2002).
  18. D. Marcenac, “Travelling wave effects for wavelength conversion by cross-gain modulation and cross-phase modulation in optical amplifiers,” Int. J. Optoelectron. 10, 325–329 (1995).
  19. A. Mecozzi, “Small-signal theory of wavelength converters based on cross-gain modulation in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 8, 1471–1473 (1996).
  20. M. L. Nielsen, D. J. Blumenthal, and J. Mørk, “A transfer function approach to the small-signal frequency response of saturated semiconductor optical amplifiers,” J. Lightwave Technol. 18, 2151–2157 (2000).
  21. F. Ginovart, J. C. Simon, and I. Valiente, “Gain recovery dynamics in semiconductor optical amplifiers,” Opt. Commun. 199, 111–115 (2001).
  22. J. Mørk and A. Mecozzi, “Theory of the ultrafast optical response of active semiconductor waveguides,” J. Opt. Soc. Am. B 13, 1803–1816 (1996).
  23. J. Leuthold, D. Marom, S. Cabot, R. Ryf, P. Bernasconi, F. Baumann, J. Jaques, D. T. Nielson, and C. R. Giles, “All-optical wavelength converter based on a pulse reformatting optical filter,” in Optical Fiber Communication Conference, Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper PD41–1.
  24. P. S. Cho, D. Mahgerefteh, J. Goldhar, and G. L. Burdge, “Wavelength conversion using a noninterferometric semiconductor-optical-amplifier/fiber Bragg grating device,” in Conference on Lasers and Electro-optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 477.
  25. M. L. Nielsen, B. Lavigne, and B. Dagens, “Polarity-preserving SOA-based wavelength conversion at 40 Gb/s using band-pass filtering,” Electron. Lett. 39, 1334–1335 (2003).
  26. Y. Ueno, S. Nakamura, and K. Tajima, “Spectral phase-locking in ultrafast all-optical Mach–Zehnder-type semiconductor wavelength converter,” Jpn. J. Appl. Phys., Part 1 38, 1243–1245 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited