OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 9 — Sep. 1, 2004
  • pp: 1620–1629

Spectroscopic bases for efficiency enhancement and power scaling of self-frequency multiplication and self-sum-frequency mixing emission in Nd-doped nonlinear crystals

Voicu Lupei, Gérald Aka, Johan Petit, and Daniel Vivien  »View Author Affiliations

JOSA B, Vol. 21, Issue 9, pp. 1620-1629 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (223 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The possibility to enhance the self-nonlinear emission characteristics in Nd-activated nonlinear crystals by direct pumping into the emitting level  4F3/2 is discussed. It is inferred that the reduction of threshold and the increase of the slope efficiency for the intracavity emission at the fundamental frequency caused by the reduction of quantum defect between the pump and the emitted quanta in the case of direct pumping are strongly amplified in the self-nonlinear processes. Moreover, the diminished heat generation could contribute to a more stable emission and to the scaling to a higher power. The possibility to use the direct pumping is determined by the spectroscopic properties of the laser material. This is illustrated for Nd3+ in Ca4GdO(BO3)3, where, for direct pumping, the thermally activated transition  4I9/2(Z2)4F3/2(R1) at 887 nm is suitable. Pumping in this band induces an enhancement of the self-doubled emission power at 530 nm by ∼2.5 times for an absorbed power four to five times above threshold as compared with the 811-nm pumping into the level  4F5/2 of Nd3+.

© 2004 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.5560) Lasers and laser optics : Pumping
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers

Voicu Lupei, Gérald Aka, Johan Petit, and Daniel Vivien, "Spectroscopic bases for efficiency enhancement and power scaling of self-frequency multiplication and self-sum-frequency mixing emission in Nd-doped nonlinear crystals," J. Opt. Soc. Am. B 21, 1620-1629 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Brenier, “The self-doubling and summing lasers: overview and modeling,” J. Lumin. 91, 121–132 (2000). [CrossRef]
  2. R. Norrestam, M. Nguyen, and J. O. Bovin, “Structural investigation of new calcium-rare earth (R) oxyborates with the composition Ca4RE(BO3)3,” Chem. Mater. 4, 737–743 (1992). [CrossRef]
  3. G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. P. Damelet, “Linear and nonlinear optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14, 2238–2247 (1997). [CrossRef]
  4. F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997). [CrossRef]
  5. M. Iwai, T. Kobayashi, H. Furuya, Y. Mori, and T. Sasaki, “Crystal growth and optical characterization of rare-earth (Re) calcium oxyborate ReCa4O(BO3)3 (Re=Y or Gd) as new nonlinear optical material,” Jpn. J. Appl. Phys., Part 1 36, L276–L279 (1997). [CrossRef]
  6. F. Mougel, A. Kahn-Harari, G. Aka, and D. Pelenc, “Structural and thermal stability of Czochralski-grown GdCOB oxoborate single crystals,” J. Mater. Chem. 8, 1619–1623 (1998). [CrossRef]
  7. C. Maunier, J. L. Doualan, G. Aka, J. Landais, E. Antic-Fidancev, R. Moncorge, and D. Vivien, “Excited state absorption of self-frequency doubling laser material Nd:GdCOB,” Opt. Commun. 184, 209–214 (2000). [CrossRef]
  8. C. Lucas-Leclin, F. Auge, S. C. Auzaneau, F. Balembois, P. Georges, A. Brun, F. Mougel, G. Aka, and D. Vivien, “Diode-pumped self-frequency-doubling Nd:GdCa4O(BO3)3 lasers: toward green microchip lasers,” J. Opt. Soc. Am. B 17, 1526–1530 (2000). [CrossRef]
  9. G. Aka, F. Mougel, F. Auge, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium oxo-borate Ca4GdO(BO3)3,” J. Alloys Compd. 303–304, 401–408 (2000). [CrossRef]
  10. G. Dominiak-Dzik, W. Ryba-Romanowski, S. Golab, L. Macalik, J. Hanuza, and A. Pajczkowska, “Spectroscopic investigation of Nd3+ and Yb3+ in Ca4GdO(BO3)3 crystals,” J. Mol. Struct. 55, 213–218 (2000). [CrossRef]
  11. D. Vivien, F. Mougel, F. Auge, G. Aka, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16, 213–220 (2001). [CrossRef]
  12. A. Lupei, E. Antic-Fidancev, G. Aka, D. Vivien, P. Aschehoug, Ph. Goldner, F. Pelle, and L. Gheorghe, “Spectroscopic and crystal field studies of Nd3+ in GdCOB and YCOB,” Phys. Rev. B 65, 224518 (2002). [CrossRef]
  13. H. R. Xia, W. Q. Zhang, S. J. Zhang, Z. X. Cheng, X. F. Cheng, and Z. H. Yang, “Raman measurement and optical properties of Nd:GdCa4O(BO3)3 crystals,” J. Appl. Phys. 92, 5060–5067 (2002). [CrossRef]
  14. C. Q. Wang, Y. T. Chow, W. A. Gambling, S. J. Zhang, Z. X. Cheng, Z. S. Shao, and H. C. Chen, “Efficient self-frequency doubling of Nd:GdCOB crystal by type-I phase matching out of its principal planes,” Opt. Commun. 174, 471–474 (2000). [CrossRef]
  15. X. Chen, M. Huang, Z. Luo, and Y. Huang, “Determination of the optimum phase matching directions for the self-frequency conversion of Nd:GdCOB and Nd:YCOB crystals,” Opt. Commun. 196, 299–307 (2001). [CrossRef]
  16. J. Liu, X. Xu, C. Q. Wang, S. Zhang, J. Wang, H. Chen, Z. Shao, and M. Jiang, “Intracavity second-harmonic generation of 1.064 microns in GdCa4O(BO3)3 crystals,” Appl. Phys. B 72, 163–168 (2001). [CrossRef]
  17. A. Brenier, A. Majchrowski, E. Michalski, and T. Lukasiewics, “Evaluation of GdCOB:Nd3+ for self-frequency doubling in the optimum phase matching directions,” Opt. Commun. 217, 395–400 (2003). [CrossRef]
  18. J. Zhou, Z. Zhong, J. Xu, J. Lao, W. Hua, and S. Fan, “Bridgman growth and characterization of nonlinear optical crystals Ca4GdO(BO3)3,” Mater. Sci. Eng., B 97, 283–287 (2003). [CrossRef]
  19. V. Lupei, “Efficiency enhancement and power scaling of Nd lasers,” Opt. Mater. 24, 353–368 (2003). [CrossRef]
  20. V. Lupei, G. Aka, and D. Vivien, “Enhanced fundamental and self-frequency doubling laser emission efficiency in 4F3/2 directly pumped Nd-activated nonlinear crystals: the case of GdCa4O(BO3)3,” Appl. Phys. Lett. 81, 811–813 (2002). [CrossRef]
  21. N. Bloembergen, Nonlinear Optics (Benjamin, New York, 1965).
  22. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968). [CrossRef]
  23. X. Chen, Z. Luo, and Y. Huang, “Modeling of the self-sum-frequency mixing laser,” J. Opt. Soc. Am. B 18, 646–656 (2001). [CrossRef]
  24. V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and A. Ikesue, “The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd:YAG ceramics,” Phys. Rev. B 64, 092102 (2001). [CrossRef]
  25. G. T. Liu, M. J. Finander, P. J. Corvini, A. Salokarve, K. Rakennus, T. Kuuslahti, and J. Kongas, “Reliable 20 W CW operation of 880 nm laser array with aluminium-free active regions,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), paper CtuM58, p. 197.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited