OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 9 — Sep. 1, 2004
  • pp: 1638–1646

Femtosecond dynamics of active semiconductor waveguides: microscopic analysis and experimental investigations

E. Gehrig, O. Hess, A. Volland, G. Jennemann, I. Fischer, and W. Elsäβer  »View Author Affiliations


JOSA B, Vol. 21, Issue 9, pp. 1638-1646 (2004)
http://dx.doi.org/10.1364/JOSAB.21.001638


View Full Text Article

Acrobat PDF (945 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present theoretical and experimental results of nonlinear amplification and propagation of short optical pulses in Fabry–Perot semiconductor lasers. The theoretical description is based on spatially resolved Maxwell–Bloch–Langevin equations that take into account the spatially varying light-field dynamics including counterpropagation, diffraction, self-focusing, and the microscopic carrier dynamics including carrier heating and carrier relaxation. Femtosecond pump–probe measurements using upconversion and femtosecond-resolved pump–probe measurements and frequency-resolved optical gating on a Fabry–Perot laser allow a combined analysis of the transmitted pulses in real time and the spectral domain. The experimental results are compared with the microscopically calculated gain and index distributions, pulse shapes, and optical spectra. In order to assess the full potential of semiconductor lasers and amplifiers, a quantitative measurement and understanding of amplitude and phase dynamics is required. The computer simulations of the ultrashort dynamics of semiconductor waveguides with optical injection of light pulses provide insight into the dynamic spectral gain and index changes responsible for frequency drifts and self-phase modulation, visualization of propagation effects, and a time- and frequency-resolved analysis of the amplified light pulses.

© 2004 Optical Society of America

OCIS Codes
(140.3280) Lasers and laser optics : Laser amplifiers
(140.3430) Lasers and laser optics : Laser theory
(140.5960) Lasers and laser optics : Semiconductor lasers
(320.2250) Ultrafast optics : Femtosecond phenomena

Citation
E. Gehrig, O. Hess, A. Volland, G. Jennemann, I. Fischer, and W. Elsäβer, "Femtosecond dynamics of active semiconductor waveguides: microscopic analysis and experimental investigations," J. Opt. Soc. Am. B 21, 1638-1646 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-9-1638


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. P. Agrawal and N. K. Dutta, Long Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986).
  2. See, e.g., G. P. Agrawal and N. K. Dutta, Semiconductor Lasers (Van Nostrand Reinhold, New York, 1993), and references therein.
  3. E. Gehrig and O. Hess, “Propagating spatial optical solitons in semiconductor lasers,” Opt. Photonics News 10 (12), 23–25 (1999).
  4. A. Knorr and S. Hughes, “Microscopic theory of ultrashort pulse compression and break-up in a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 13, 782–784 (2001).
  5. J. F’orstner, A. Knorr, and S. W. Koch, “Nonlinear pulse propagation in semiconductors: hole burning within a homogeneous line,” Phys. Rev. Lett. 86, 476–479 (2001).
  6. T. Meier, S. W. Koch, P. Brick, C. Ell, G. Khitrova, and H. M. Gibbs, “Signature of correlations in intensity-dependent excitonic absorption changes,” Phys. Rev. B 62, 4218–4221 (2000).
  7. A. Thranhardt, S. Kuckenberg, A. Knorr, P. Thomas, and S. W. Koch, “Interplay between coherent and incoherent scattering in quantum well secondary emission,” Phys. Rev. B 62, 16802–16807 (2000).
  8. A. Thranhardt, C. Ell, S. Mosor, G. Rupper, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Interplay of phonon and disorder scattering in semiconductor quantum wells,” Phys. Rev. B 68, 035316 (2003).
  9. W. Hoyer, M. Kira, and S. W. Koch, “Influence of Coulomb and phonon interaction on the exciton formation dynamics in semiconductor heterostructures,” Phys. Rev. B 67, 155113 (2003).
  10. J. Li and C. Z. Ning, “Hydrodynamic theory for spatially inhomogeneous semiconductor lasers. I. A microscopic approach,” Phys. Rev. A 66, 023802 (2002).
  11. H. G. Breunig, T. Voss, I. Ruckmann, J. Gutowski, V. M. Axt, and T. Kuhn, “Influence of higher Coulomb correlations on optical coherent-control signals from a ZnSe quantum well,” J. Opt. Soc. Am. B 20, 1769–1779 (2003).
  12. J. V. Moloney, R. A. Indik, J. Hader, and S. W. Koch, “Modeling semiconductor amplifiers and lasers: from microscopic physics to device simulation,” J. Opt. Soc. Am. B 16, 2023–2029 (1999).
  13. S. Hughes, P. Borri, A. Knorr, F. Romstad, and J. M. Hvam, “Ultrashort pulse-propagation effects in a semiconductor optical amplifier: microscopic theory and experiment,” IEEE J. Sel. Top. Quantum Electron. 7, 694–702 (2001).
  14. R. A. Indik, J. V. Moloney, R. Binder, A. Knorr, and S. W. Koch, “Self-induced channeling of subpicosecond optical pulses in broad-area bulk semiconductor amplifiers,” Opt. Lett. 20, 2315–2317 (1995).
  15. E. Gehrig and O. Hess, “Spatio-temporal dynamics of light amplification and amplified spontaneous emission in high-power tapered semiconductor laser amplifiers,” IEEE J. Quantum Electron. 37, 1345–1355 (2001).
  16. E. Gehrig and O. Hess, “Nonequilibrium spatio-temporal dynamics of the Wigner distributions in broad-area semiconductor lasers,” Phys. Rev. A 57, 2150–2162 (1998).
  17. O. Hess and T. Kuhn, “Maxwell–Bloch equations for spatially inhomogeneous semiconductor lasers. I: Theoretical description,” Phys. Rev. A 54, 3347–3359 (1996).
  18. W. W. Chow, S. W. Koch, and M. Sargent III, Semiconductor-Laser Physics (Springer-Verlag, Berlin, 1994).
  19. M. Lindberg, R. Binder, and S. W. Koch, “Theory of the semiconductor photon echo,” Phys. Rev. A 45, 1865–75 (1992).
  20. A. Uskov, J. Mørk, and J. Mark, “Wave mixing in semiconductor laser amplifier due to carrier heating and spectral hole burning,” IEEE J. Quantum Electron. 30, 1769–1781 (1994).
  21. P. O’Brien, J. O’Callaghan, and J. McInerney, “Internal temperature distribution measurements in high power semiconductor lasers,” Electron. Lett. 34, 1399–1401 (1998).
  22. H. F. Hofmann and O. Hess, “Quantum Maxwell–Bloch equations for spatially inhomogeneous semiconductor lasers,” Phys. Rev. A 59, 2342–2358 (1999).
  23. E. Gehrig, D. Woll, M. Tremont, A. Robertson, R. Wallenstein, and O. Hess, “Saturation behavior and self-phase modulation of picosecond pulses in single-stripe and tapered semiconductor laser amplifiers,” J. Opt. Soc. Am. B 17, 1452–1456 (2000).
  24. I. S. Grieg and J. D. Morris, “A Hopscotch method for the Korteweg–de Vries equation,” J. Comput. Phys. 20, 60–84 (1976).
  25. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University, Cambridge, UK, 1989).
  26. K. L. Hall, G. Lenz, A. M. Darwish, and E. P. Ippen, “Subpicosecond gain and index nonlinearities in InGaAsP diode lasers,” Opt. Commun. 111, 589–612 (1994).
  27. G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
  28. K. L. Hall, G. Lenz, E. P. Ippen, and G. Raybon, “Heterodyne pump probe technique for time-domain studies of optical nonlinearities in wave-guides,” Opt. Lett. 17, 874–876 (1992).
  29. P. Borri, W. Langbein, J. Mørk, and J. M. Hvam, “Heterodyne pump–probe and four-wave mixing in semiconductor optical amplifiers using balanced lock-in detection,” Opt. Commun. 169, 317–324 (1999).
  30. F. Romstad, P. Borri, W. Langbein, J. Mørk, and J. M. Hvam, “Measurement of pulse amplitude and phase distortion in a semiconductor optical amplifier: from pulse compression to breakup,” IEEE Photonics Technol. Lett. 12, 1674–1676 (2000).
  31. M. Hofmann, S. Brorson, J. Mørk, and A. Mecozzi, “Subpicosecond heterodyne four-wave mixing experiments on InGaAsP semiconductor laser amplifiers,” Opt. Commun. 139, 117–124 (1997).
  32. http://www.physics.gatech.edu/gcuo/Tutorial/tutorial.html.
  33. K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” J. Opt. Soc. Am. B 11, 2206–2215 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited