OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 9 — Sep. 1, 2004
  • pp: 1659–1664

Nonlinear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration

N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchepare  »View Author Affiliations

JOSA B, Vol. 21, Issue 9, pp. 1659-1664 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (184 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nonlinear polarization rotation and generation of a polarization component orthogonal to the input beam were observed along fourfold axes of YVO4 and BaF2 crystals. We demonstrate experimentally that in both crystals the angle of rotation is proportional, at low intensities, to the square of the product of the input intensity and the crystal length and is the result of simultaneous action of two third-order processes. This type of nonlinear polarization rotation is driven by the real part of the cubic susceptibility. The recorded energy exchange between the two orthogonal components can exceed 10%. It is to our knowledge the highest energy-conversion efficiency achieved in a single beam nonresonant χ(3) interaction. A simple theoretical model is elaborated to describe the dependence of nonlinear polarization rotation and orthogonal polarization generation on the intensity of the input beam at both low- and high-intensity levels. It reveals the potential contributions from the real and the imaginary parts of the susceptibility tensor. Moreover, this kind of measurement is designed to permit the determination of the magnitude and the sign of the anisotropy of the real part of third-order nonlinearity in crystals with cubic or tetragonal symmetry on the basis of polarization-rotation measurements. The χxxxx(3) component of the third-order susceptibility tensor and its anisotropy sign and amplitude value for BaF2 and YVO4 crystals are estimated and discussed.

© 2004 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(190.0190) Nonlinear optics : Nonlinear optics
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(230.5440) Optical devices : Polarization-selective devices

N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchepare, "Nonlinear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration," J. Opt. Soc. Am. B 21, 1659-1664 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. A. Schroeder, D. S. McCallum, D. R. Harken, M. D. Dvorak, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Intrinsic and induced anisotropy of nonlinear absorption and refraction in zinc blende semiconductors,” J. Opt. Soc. Am. B 12, 401–415 (1995). [CrossRef]
  2. Yu. P. Svirko and N. I. Zheludev, Polarization of Light in Nonlinear Optics (Wiley, New York, 1998).
  3. M. G. Dubenskaya, R. S. Zadoyan, and N. I. Zheludev, “Nonlinear polarization spectroscopy in GaAs crystals: one- and two-photon resonances, excitonic effects, and the saturation of nonlinear susceptibilities,” J. Opt. Soc. Am. B 2, 1174–1178 (1985). [CrossRef]
  4. A. I. Kovrigin, D. V. Yakovlev, B. V. Zhdanov, and N. I. Zheludev, “Self-induced optical activity in crystals,” Opt. Commun. 35, 92–95 (1980). [CrossRef]
  5. R. S. Zadoyan, N. I. Zheludev, and L. B. Meysner, “Nonlinear polarization spectroscopy of ions interaction potential in alkali halide crystals,” Solid State Commun. 55, 713–715 (1985). [CrossRef]
  6. A. D. Petrenko and N. I. Zheludev, “Physical mechanisms of nonlinear optical activity in crystals,” Opt. Acta 31, 1177–1184 (1984). [CrossRef]
  7. M. I. Dykman and G. G. Tarasov, “Self-induced change in the polarization of electromagnetic waves in cubic crystals,” Fiz. Tverd. Tela (Leningrad) 24, 2396–2402 (1982) [ Sov. Phys. Solid State 24, 1361–1364 (1982)].
  8. D. C. Hutchings, “Nonlinear-optical activity owing to anisotropy of ultrafast nonlinear refraction in cubic materials,” Opt. Lett. 20, 1607–1609 (1995). [CrossRef] [PubMed]
  9. D. C. Hutchings, J. S. Aitchison, and J. M. Arnold, “Nonlinear refractive coupling and vector solitons in anisotropic cubic media,” J. Opt. Soc. Am. B 14, 869–879 (1997). [CrossRef]
  10. N. Minkovski, S. M. Saltiel, G. I. Petrov, O. Albert, and J. Etchepare, “Polarization rotation induced by cascaded third-order processes,” Opt. Lett. 27, 2025–2027 (2002). [CrossRef]
  11. M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Measurement of the anisotropy of two photon absorption coefficient in zincblende semiconductors,” IEEE J. Quantum Electron. 30, 256–267 (1994). [CrossRef]
  12. R. M. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).
  13. S. Akhmanov, V. Martinov, S. Saltiel, and V. Tunkin, “Nonresonant six photon process in calcite crystal,” Pis’ma Zh. Eksp. Teor. Fiz. 22, 143–147 (1975) [ JETP Lett. 22, 65–67 (1975)].
  14. S. Saltiel, S. Tanev, and A. D. Boardman, “High order nonlinear phase shift due to cascaded third order processes,” Opt. Lett. 22, 148–150 (1997). [CrossRef] [PubMed]
  15. V. Astinov, K. J. Kubarych, C. J. Milne, and R. J. D. Miller, “Diffractive optics implementation of six-wave mixing,” Opt. Lett. 25, 853–855 (2000). [CrossRef]
  16. L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, “Generation of broadband VUV light using third-order cascaded processes,” Phys. Rev. Lett. 87, 013601 (2001). [CrossRef] [PubMed]
  17. C. G. Durfee, L. Misoguti, S. Backus, H. C. Kapteyn, and M. M. Murnane, “Phase matching in cascaded third-order processes,” J. Opt. Soc. Am. B 19, 822–831 (2002). [CrossRef]
  18. G. I. Petrov, O. Albert, J. Etchepare, and S. M. Saltiel, “Cross-polarized wave generation by effective cubic nonlinear optical interaction,” Opt. Lett. 26, 355–357 (2001). [CrossRef]
  19. J. H. Burnett, Z. H. Levine, and E. L. Shirley, “Intrinsic birefringence in calcium fluoride and barium fluoride,” Phys. Rev. B 64, 241102 (2001). [CrossRef]
  20. M. Dabbicco, A. M. Fox, G. von Plessen, and J. F. Ryan, “Role of χ(3) anisotropy in the generation of squeezed light in semiconductors,” Phys. Rev. B 53, 4479–4487 (1996). [CrossRef]
  21. C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899–901 (2001). [CrossRef]
  22. Y. Q. Qin, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Quasi-phase-matched harmonic generation through coupled parametric processes in a quasiperiodic optical superlattice,” J. Appl. Phys. 84, 6911–6916 (1998). [CrossRef]
  23. S. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasiperiodic optical superlattice,” Science 278, 843–846 (1997). [CrossRef]
  24. S. M. Saltiel, A. A. Sukhorukov, and Y. S. Kivshar, “Multistep parametric processes in nonlinear optics,” in Progress in Optics Vol. 47, E. Wolf, ed. (Elsevier, Amsterdam, to be published).
  25. R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals,” Opt. Lett. 18, 194–196 (1993). [CrossRef] [PubMed]
  26. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990). [CrossRef]
  27. T. D. Krauss, J. K. Ranka, F. W. Wise, and A. L. Gaeta, “Measurements of the tensor properties of third-order nonlinearities in wide-gap semiconductors,” Opt. Lett. 20, 1110–1112 (1995). [CrossRef] [PubMed]
  28. W. Koechner, Solid-State Laser Engineering, 5th ed., Vol. 1 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited