OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 9 — Sep. 1, 2004
  • pp: 1665–1673

Designing coupled-resonator optical waveguide delay lines

Joyce K. S. Poon, Jacob Scheuer, Yong Xu, and Amnon Yariv  »View Author Affiliations

JOSA B, Vol. 21, Issue 9, pp. 1665-1673 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (218 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We address the trade-offs among delay, loss, and bandwidth in the design of coupled-resonator optical waveguide (CROW) delay lines. We begin by showing the convergence of the transfer matrix, tight-binding, and time domain formalisms in the theoretical analysis of CROWs. From the analytical formalisms we obtain simple, analytical expressions for the achievable delay, loss, bandwidth, and a figure of merit to be used to compare delay line performance. We compare CROW delay lines composed of ring resonators, toroid resonators, Fabry–Perot resonators, and photonic crystal defect cavities based on recent experimental results reported in the literature.

© 2004 Optical Society of America

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides

Joyce K. S. Poon, Jacob Scheuer, Yong Xu, and Amnon Yariv, "Designing coupled-resonator optical waveguide delay lines," J. Opt. Soc. Am. B 21, 1665-1673 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Vahala, “Optical microcavities,” Nature (London) 424, 839–846 (2003). [CrossRef]
  2. C. K. Madsen, “General IIR optical filter design for WDM applications using all-pass filters,” J. Lightwave Technol. 18, 860–868 (2000). [CrossRef]
  3. B. E. Little, S. T. Chu, W. Pan, D. Ripin, T. Kaneko, Y. Kokubun, and E. Ippen, “Vertically coupled glass microring resonator channel dropping filters,” IEEE Photonics Technol. Lett. 11, 215–217 (1999). [CrossRef]
  4. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filter,” J. Lightwave Technol. 15, 998–1005 (1997). [CrossRef]
  5. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999). [CrossRef]
  6. N. Stefanou and A. Modinos, Impurity bands in photonic insulators, Phys. Rev. B 57, 12127–12133 (1998). [CrossRef]
  7. A. Melloni and F. Morichetti, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. Quantum Electron. 35, 365–379 (2003). [CrossRef]
  8. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001). [CrossRef]
  9. S. Lan, S. Nishikawa, H. Ishikawa, and O. Wada, “Engineering photonic crystal impurity bands for waveguides, all-optical switches and optical delay lines,” IEICE Trans. Electron. E85C, 181–189 (2002).
  10. S. Mookherjea and A. Yariv, “Pulse propagation in a coupled-resonator optical waveguide to all orders of dispersion,” Phys. Rev. E 65, 056601 (2002). [CrossRef]
  11. M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2140–2143 (2000). [CrossRef] [PubMed]
  12. K. Oda, N. Takato, and H. Toba, “A wide-FSR waveguide double-ring resonator for optical FDM transmission systems,” J. Lightwave Technol. 9, 728–736 (1991). [CrossRef]
  13. R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring resonator filters for optical systems,” IEEE Photonics Technol. Lett. 7, 1447–1449 (1995). [CrossRef]
  14. G. T. Paloczi, Y. Huang, A. Yariv, and S. Mookherjea, “Polymeric Mach–Zehnder interferometer using serially coupled microresonators,” Opt. Express 11, 2666–2671 (2003), http://www.opticsexpress.org. [CrossRef] [PubMed]
  15. J. K. S. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12, 90–103 (2004), http://www.opticsexpress.org. [CrossRef] [PubMed]
  16. A. L. Reynolds, U. Peschel, F. Lederer, P. J. Roberts, T. F. Krauss, and P. J. I. de Maagt, “Coupled defects in photonic crystals,” IEEE Trans. Microwave Theory Tech. 49, 1860–1867 (2001). [CrossRef]
  17. S. Mookherjea and A. Yariv, “Optical pulse propagation in the tight-binding approximation,” Opt. Express 9, 91–96 (2001), http://www.opticsexpress [CrossRef] [PubMed]
  18. S. Mookherjea and A. Yariv, “Optical pulse propagation and holographic storage in a coupled-resonator optical waveguide,” Phys. Rev. E 64, 066602 (2001). [CrossRef]
  19. S. Mookherjea and A. Yariv, “Second-harmonic generation with pulses in a coupled-resonator optical waveguide,” Phys. Rev. E 65, 026607 (2002). [CrossRef]
  20. J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photonics Technol. Lett. 12, 320–322 (2000). [CrossRef]
  21. D. N. Christodoulides and N. K. Efremidis, “Discrete temporal solitons along a chain of nonlinear coupled microcavities embedded in photonic crystals,” Opt. Lett. 27, 568–570 (2002). [CrossRef]
  22. S. Mookherjea and A. Yariv, “Kerr-stabilized super-resonant modes in coupled-resonator optical waveguides,” Phys. Rev. E 66, 046610 (2002). [CrossRef]
  23. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Paren Oxford U. Press, New York, 1997).
  24. O. J. Painter, K. Srinivasan, and P. E. Barclay, “Wannier-like equation for the resonant cavity modes of locally perturbed photonic crystals,” Phys. Rev. B 68, 035214 (2003). [CrossRef]
  25. Z.-Y. Li and K.-M. Ho, “Light propagation in semi-infinite photonic crystals and related waveguide structures,” Phys. Rev. B 68, 155101 (2003). [CrossRef]
  26. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, New York, 1984).
  27. P. Rabiei and W. H. Steier, “Tunable polymer double micro-ring filters,” IEEE Photonics Technol. Lett. 15, 1255–1257 (2003). [CrossRef]
  28. Y. Yanagase, S. Yamagata, and Y. Kokubun, “Wavelength tunable polymer microring resonator filter with 9.4 nm tuning range,” Electron. Lett. 39, 922–924 (2003). [CrossRef]
  29. R. L. Dantec, T. Benyattou, G. Guillot, A. Spisser, C. Seassal, J. L. Leclercq, P. Viktorovitch, D. Rondi, and R. Blondeau, “Tunable microcavity based on InP-air Bragg mirrors,” IEEE J. Sel. Top. Quantum Electron. 5, 111–114 (1999). [CrossRef]
  30. M. Strassner, C. Luber, A. Tarraf, and N. Chitica, “Widely tunable-constant bandwidth monolithic Fabry–Perot filter with a stable cavity design for WDM systems,” IEEE Photonics Technol. Lett. 14, 1548–1550 (2002). [CrossRef]
  31. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, New York, 1999).
  32. A. Melloni and M. Martinelli, “Synthesis of direct-coupled-resonators bandpass filters for WDM systems,” J. Lightwave Technol. 20, 296–303 (2002). [CrossRef]
  33. H. F. Taylor, “Design of multireflector resonant bandpass filters for guided wave optics,” J. Lightwave Technol. 19, 866–871 (2001). [CrossRef]
  34. R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, “Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters,” J. Lightwave Technol. 20, 900–905 (2002). [CrossRef]
  35. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20, 1968–1975 (2002). [CrossRef]
  36. P. P. Absil, S. T. Chu, D. Gill, J. V. Hryniewicz, F. Johnson, O. King, B. E. Little, F. Seiferth, and V. Van, “Very high order integrated optical filters,” in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2004), paper TuL3.
  37. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature (London) 421, 925–928 (2003). [CrossRef]
  38. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003). [CrossRef]
  39. K. Srinivasan, P. E. Barclay, O. J. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917 (2003). [CrossRef]
  40. S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154–2165 (1997). [CrossRef]
  41. For example specifications of the JDS fused coupler, polarization maintaining tap are provided on the JDS Uniphase website: www.jdsu.com/site/images/products/pdf/FFP_021604.pdf.
  42. A. L. Martin, D. K. Armani, L. Yang, and K. J. Vahala, “Replica-molded high-Q polymer microresonators,” Opt. Lett. 29, 533–535 (2004). [CrossRef] [PubMed]
  43. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003). [CrossRef] [PubMed]
  44. M. Bayindir, S. Tanriseven, and E. Ozbay, “Propagation of light through localized coupled-cavity modes in one-dimensional photonic band-gap structures,” Appl. Phys. A: Solids Surf. 72, 117–119 (2001). [CrossRef]
  45. S. Olivier, C. Smith, M. Rattier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdre, and U. Osterle, “Miniband transmission in a photonic crystal waveguide coupled-resonator optical waveguide,” Opt. Lett. 26, 1019–1051 (2001). [CrossRef]
  46. T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002). [CrossRef]
  47. S. Nishikawa, S. Lan, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Optical characterization of photonic crystal delay lines based on one-dimensional coupled defects,” Opt. Lett. 27, 2079–2081 (2002). [CrossRef]
  48. T. D. Happ, M. Kamp, A. Forchel, J. L. Gentner, and L. Goldstein, “Two-dimensional photonic crystal coupled-defect laser diode,” Appl. Phys. Lett. 82, 4–6 (2003). [CrossRef]
  49. A. A. Savchenkov, V. S. Ilchenko, T. Handley, and L. Maleki, “Second-order filter response with series-coupled silica microresonators,” IEEE Photonics Technol. Lett. 15, 543–544 (2003). [CrossRef]
  50. D. G. Rabus, M. Hamacher, U. Troppenz, and H. Heidrich, “High-Q channel-dropping filters using ring resonators with integrated SOAs,” IEEE Photonics Technol. Lett. 14, 1442–1444 (2002). [CrossRef]
  51. S. T. Chu, W. Pan, S. Sato, T. Kaneko, B. E. Little, and Y. Kokubun, “Wavelength trimming of a microring resonator filter by means of a UV sensitive polymer overlay,” IEEE Photonics Technol. Lett. 11, 688–690 (1999). [CrossRef]
  52. H. Haciwa, T. Naganawa, and Y. Kokubun, “Wide range center wavelength trimming of vertically coupled microring resonator filter by direct UV irradiation to SiN ring core,” IEEE Photonics Technol. Lett. 16, 135–137 (2004). [CrossRef]
  53. S. T. Chu, B. E. Little, V. Van, J. V. Hryniewicz, P. P. Absil, F. G. Johnson, D. Gill, O. King, F. Seiferth, M. Trakalo, and J. Shanton, “Compact full C-band tunable filters for 50 GHz channel spacing based on high order micro-ring resonators,” in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2004), paper PDP9.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited