OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 9 — Sep. 1, 2004
  • pp: 1674–1678

Waveguides and directional coupler induced by white-light photovoltaic dark spatial solitons

Yi Lu, Simin Liu, Guoquan Zhang, Ru Guo, Nan Zhu, and Lisen Yang  »View Author Affiliations

JOSA B, Vol. 21, Issue 9, pp. 1674-1678 (2004)

View Full Text Article

Acrobat PDF (501 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have observed experimentally, for the first time to our knowledge, one-dimensional photovoltaic dark spatial solitons in LiNbO3:Fe crystal by using incoherent white light. We have also fabricated a directional coupler consisting of two waveguides induced by two mutually incoherent white-light photovoltaic dark spatial solitons propagating in parallel in close proximity. It was found that the light field of a probe laser beam launched into one of the two proximate waveguides can be efficiently coupled into the other waveguide because of the presence of evanescent waves. We also studied the dependence of the coupling efficiency on the distance between the two proximate soliton-induced waveguides.

© 2004 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(230.7370) Optical devices : Waveguides

Yi Lu, Simin Liu, Guoquan Zhang, Ru Guo, Nan Zhu, and Lisen Yang, "Waveguides and directional coupler induced by white-light photovoltaic dark spatial solitons," J. Opt. Soc. Am. B 21, 1674-1678 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. Morin, G. Duree, G. Salamo, and M. Segev, “Waveguides formed by quasi-steady-state photorefractive spatial solitons,” Opt. Lett. 20, 2066–2068 (1995).
  2. M. Shih, M. Segev, and G. J. Salamo, “Circular waveguides induced by two-dimensional bright steady-state photorefractive spatial screening solitons,” Opt. Lett. 21, 931–933 (1996).
  3. C. Denz, T. Dellwig, J. Lembcke, and T. Tschudi, “Parallel optical image addition and subtraction in a dynamic photorefrective memory by phase-code multiplexing,” Opt. Lett. 21, 278–280 (1996).
  4. M. Shih, Z. Chen, M. Mitchell, and M. Segev, “Waveguides induced by photorefractive screening solitons,” J. Opt. Soc. Am. B 14, 3091–3101 (1997).
  5. M. Segev and G. Stegeman, “Self-trapping of optical beams: spatial solitons,” Phys. Today 51 (X), 42–48 (1998).
  6. H. Jerominek, C. Delisle, and R. Tremblay, “Optical branching effect in Ti:LiNbO3 waveguides: near-field pattern studies,” Appl. Opt. 25, 732–736 (1986).
  7. G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, “Dark and bright photovoltaic spatial solitons,” Phys. Rev. A 50, R4457–R4460 (1994).
  8. M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095–3100 (1995).
  9. M. Shih, P. Leach, M. Segev, M. H. Garrett, G. J. Salamo, and G. C. Valley, “Two-dimensional steady-state photorefractive screening solitons,” Opt. Lett. 21, 324–326 (1996).
  10. G. Q. Zhang, S. M. Liu, J. J. Xu, G. Y. Zhang, and Q. Sun, “Photorefractive spatial dark-soliton stripes in LiNbO3:Fe crystal and their application,” Chin. Phys. Lett. 13, 101–104 (1996).
  11. M. Mitchell, Z. Chen, M. Shih, and M. Segev, “Self-trapping of partially spatially incoherent light,” Phys. Rev. Lett. 77, 490–493 (1996).
  12. M. Mitchell and M. Segev, “Self-trapping of incoherent white light,” Nature 387, 880–883 (1997).
  13. Z. Chen, M. Mitchell, M. Segev, T. H. Coskun, and D. N. Christodoulides, “Self-trapping of dark incoherent light beams,” Science 280, 889–892 (1998).
  14. T. H. Coskun, D. N. Christodoulides, Z. Chen, and M. Segev, “Dark incoherent soliton splitting and ‘phase-memory’ effects: theory and experiment,” Phys. Rev. E 59, R4777–R4780 (1999).
  15. A. A. Sukhorukov and N. N. Akhmediev, “Coherent and incoherent contributions to multisoliton complexes,” Phys. Rev. Lett. 83, 4736–4739 (1999).
  16. Z. Chen, M. Segev, D. N. Christodoulides, and R. S. Feigelson, “Waveguides formed by incoherent dark solitons,” Opt. Lett. 24, 1160–1162 (1999).
  17. X. S. Wang and W. L. She, “Partially spatially incoherent photovoltaic spatial soliton,” Acta Phys. Sin. 51, 573–577 (2002).
  18. M. I. Carvalho, S. R. Singh, and D. N. Christodoulides, “Self-deflection of steady-state bright spatial solitons in biased photorefractive crystals,” Opt. Commun. 120, 311–315 (1995).
  19. Z. Chen, M. Segev, T. H. Coskun, and D. N. Christodoulides, “Observation of incoherently coupled photorefractive spatial soliton pairs,” Opt. Lett. 21, 1436–1438 (1996).
  20. G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
  21. L. Lerner, D. J. Mitchell, and A. W. Snyder, “Interacting gray solitons,” Opt. Lett. 19, 1302–1304 (1994).
  22. C. Denz, W. Krolikowski, J. Petter, C. Weilnau, T. Tschudi, M. R. Belic, F. Kaiser, and A. Stepken, “Dynamics of formation and interaction of photorefractive screening soliton,” Phys. Rev. E 60, 6222–6225 (1999).
  23. W. Krolikowski, B. Luther-Davies, C. Denz, J. Petter, C. Weilnau, A. Stepken, and M. Belie, “Interaction of two-dimensional spatial incoherent solitons in a photorefractive medium,” Appl. Phys. B 68, 975–982 (1999).
  24. W. Krolikowski, N. Akhmediev, and B. Luther-Devies, “Collision-induced shape transformations of partially coherent solitons,” Phys. Rev. E 59, 4654–4658 (1999).
  25. S. Lan, E. DelRe, Z. Chen, M. Shih, and M. Segev, “Directional coupler with soliton-induced waveguides,” Opt. Lett. 24, 475–477 (1999).
  26. N. I. Nikolov, D. Neshev, W. Kolikowski, O. Bang, J. J. Rasmussen, and P. L. Christiansen, “Attraction of nonlocal dark optical solitons,” Opt. Lett. 29, 286–288 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited