OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 22, Iss. 1 — Jan. 1, 2005
  • pp: 261–273

Modeling of a novel InP-based monolithically integrated magneto-optical waveguide isolator

K. Postava, M. Vanwolleghem, D. Van Thourhout, R. Baets, Š. Višňovský, P. Beauvillain, and J. Pištora  »View Author Affiliations


JOSA B, Vol. 22, Issue 1, pp. 261-273 (2005)
http://dx.doi.org/10.1364/JOSAB.22.000261


View Full Text Article

Enhanced HTML    Acrobat PDF (350 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method based on Yeh’s rigorous 4×4 matrix algebra and a fast perturbation-theory-based method are proposed for modeling and optimization of an integrated magneto-optical (MO) waveguide isolator. The transverse MO Kerr effect in ferromagnetic Co90Fe10 is used to design the integrated isolator. Waveguide losses introduced by absorption in the MO metallic film are compensated for by optical gain in an InP-based semiconductor optical amplifier with a tensile strained multiple-quantum-well (MQW) active region. The desired device isolation, which originates from the nonreciprocity of the transverse MO effect, is obtained by operation of the device under appropriate current injection, leading to zero modal net gain in the forward direction while the device remains lossy in the backward direction. In the approach based on Yeh’s matrix formalism, phenomena such as the MO effects described by anisotropic permittivity tensors, waveguide losses in absorbing layers, and optical gain in the active layer are explicitly included. Numerical aspects of the resonant condition solution for waveguide modes are discussed. In the perturbation theory method, the MO nonreciprocal waveguide effects are calculated in a first-order scheme. The general models are applied in an example of a realistic InP-based MQW isolator with a Co90Fe10 MO layer, indicating that practical isolation ratios are achievable within reasonable levels of necessary material gain. Rigorous and perturbation models are compared, and good agreement is obtained. This result indicates that first-order perturbation theory modeling of integrated magneto-optics is accurate enough, even for devices that employ MO materials with relatively strong Voigt parameters.

© 2005 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.3240) Optical devices : Isolators
(230.3810) Optical devices : Magneto-optic systems

Citation
K. Postava, M. Vanwolleghem, D. Van Thourhout, R. Baets, S. Visnovský, P. Beauvillain, and J. Pistora, "Modeling of a novel InP-based monolithically integrated magneto-optical waveguide isolator," J. Opt. Soc. Am. B 22, 261-273 (2005)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-22-1-261


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Levy, "The on-chip integration of magnetooptic waveguide isolators," IEEE J. Sel. Top. Quantum Electron. 8, 1300-1306 (2002). [CrossRef]
  2. M. Levy, R. Scarmozzino, R. M. Osgood, Jr., R. Wolfe, F. J. Cadieu, H. Hedge, C. J. Gutierrez, and G. A. Prinz, "Permanent magnet film magneto-optic waveguide isolator," J. Appl. Phys. 75, 6286-6288 (1994). [CrossRef]
  3. H. Yokoi, T. Mizumoto, S. Kuroda, T. Ohtsuka, and Y. Nakano, "Elimination of a back-reflected TE mode in a TM-mode optical isolator with Mach-Zehnder interferometer," Appl. Opt. 41, 7045-7051 (2002). [CrossRef] [PubMed]
  4. H. Yokoi, T. Mizumoto, and Y. Shoji, "Optical nonreciprocal devices with a silicon guiding layer fabricated by wafer bonding," Appl. Opt. 42, 6605-6612 (2003). [CrossRef] [PubMed]
  5. J. Fujita, M. Levy, R. M. Osgood, Jr., L. Wilkens, and H. Dötsch, "Waveguide optical isolator based on Mach-Zehnder interferometer," Appl. Phys. Lett. 76, 2158-2160 (2000). [CrossRef]
  6. O. Zhuromskyy, H. Dötsch, M. Lohmeyer, L. Wilkens, and P. Hertel, "Magnetooptical waveguide with polarization-independent nonreciprocal phaseshift," J. Lightwave Technol. 19, 214-221 (2001). [CrossRef]
  7. H. Yokoi, T. Mizumoto, N. S. N. Futakuchi, and Y. Nakano, "Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift," Appl. Opt. 39, 6158-6164 (2000). [CrossRef]
  8. T. Shintaku, "Integrated optical isolator based on efficient nonreciprocal radiation mode conversion," Appl. Phys. Lett. 73, 1946-1948 (1998). [CrossRef]
  9. T. Izuhara, J. Fujita, M. Levy, and R. M. Osgood, Jr., "Integration of magnetooptical waveguides onto a III-V semiconductor surface," IEEE Photonics Technol. Lett. 14, 167-169 (2002). [CrossRef]
  10. H. Yokoi, T. Mizumoto, M. Shimizu, T. Waniishi, N. Futakuchi, N. Kaida, and Y. Nakano, "Analysis of GaInAsP surfaces by contact-angle measurement for wafer direct bonding of garnet crystals," Jpn. J. Appl. Phys. 38, 4780-4783 (1999). [CrossRef]
  11. M. Takenaka and Y. Nakano, "Proposal of a novel semiconductor optical waveguide isolator," presented at the 11th International Conference on Indium Phosphide and Related Materials, Davos, Switzerland, May 16-20, 1999.
  12. W. Zaets and K. Ando, "Optical waveguide isolator based on nonreciprocal loss/gain amplifier covered by ferromagnetic layer," IEEE Photonics Technol. Lett. 11, 1012-1014 (1999). [CrossRef]
  13. A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials (Institute of Physics Publishing, Bristol, UK, 1997).
  14. L. Wilkens, D. Träger, H. Dötsch, A. F. Popkov, and A. M. Alekseev, "Nonreciprocal phase shift of TE modes induced by a compensation wall in a magneto-optic rib waveguide," Appl. Phys. Lett. 79, 4292-4294 (2001). [CrossRef]
  15. T. Mizumoto, Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, Tokyo (personal communication, 2004).
  16. H. Shimizu and M. Tanaka, "Design of semiconductor-waveguide-type optical isolators using the nonreciprocal loss/gain in the magneto-optical waveguides having MnAs nanoclusters," Appl. Phys. Lett. 81, 5246-5248 (2002). [CrossRef]
  17. M. Vanwolleghem, W. Van Parys, S. Verstuyft, R. Wirix-Speetjens, L. Lagae, J. De Boeck, and R. Baets, "Ferromagnetic-metal-based InGaAs(P)/InP optical waveguide isolator: electrical and magneto-optical characterization," in Proceedings of The Annual Symposium of the IEEE/LEOS Benelux Chapter (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 282-285.
  18. E. P. O'Reilly and A. R. Adams, "Band-structure engineering in strained semiconductor lasers," IEEE J. Quantum Electron. 30, 366-379 (1994). [CrossRef]
  19. J. Decobert, N. Lagay, C. Cuisin, and B. Dagens, "MOVPE growth of AlGaInAsInP highly tensile-strained MQW's for 1.3 µm low-threshold lasers," presented at the Twelfth International Conference on Metal Organic Vapor Phase Epitaxy, Maui, Hawaii, May 30-June 4, 2004.
  20. M. Vanwolleghem, W. Van Parys, D. Van Thourhout, R. Baets, F. Lelarge, O. Gauthier-Lafaye, B. Thedrez, R. Wirix-Speetjens, and J. De Boeck, "Experimental verification of a novel integrated isolator concept," presented at the 29th European Conference on Optical Communication, Rimini, Italy, September 21-25, 2003.
  21. M. Vanwolleghem, W. Van Parys, D. Van Thourhout, R. Baets, F. Lelarge, O. Gauthier-Lafaye, B. Thedrez, R. Wirix-Speetjens, and J. De Boeck, "First experimental demonstration of a monolithically integrated InP-based waveguide isolator," in Optical Fiber Communication Conference , Vols. 95/A and 95/B of the OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2004), paper TuE6.
  22. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, London, 1984).
  23. S. Visnovský, "Magneto-optical ellipsometry," Czech. J. Phys., Sect. B 36, 625-650 (1986). [CrossRef]
  24. D. W. Berreman, "Optics in stratified and anisotropic media: 4×4-matrix formulation," J. Opt. Soc. Am. 62, 502-510 (1972). [CrossRef]
  25. P. Yeh, "Optics of anisotropic layered media: a new 4×4 matrix algebra," Surf. Sci. 96, 41-53 (1980). [CrossRef]
  26. M. Mansuripur, "Analysis of multilayer thin-film structures containing magneto-optic and anisotropic media at oblique incidence using 2×2 matrices," J. Appl. Phys. 67, 6466-6475 (1990). [CrossRef]
  27. K. Postava, T. Yamaguchi, and R. Kantor, "Matrix description of coherent and incoherent light reflection and transmission by anisotropic multilayer structures," Appl. Opt. 41, 2521-2531 (2002). [CrossRef] [PubMed]
  28. S. Visnovský, "Optics of magnetic multilayers," Czech. J. Phys., Sect. B 41, 663-694 (1991). [CrossRef]
  29. K. Postava, J. Pistora, and S. Visnovský, "Magnetooptical effects in ultrathin structures at transversal magnetization," Czech. J. Phys., Sect. B 49, 1185-1204 (1999). [CrossRef]
  30. F. Abeles, "Recherches sur la propagation des ondes electromagnetiques sinusoidales dans les milieux stratifies: application aux couches minces," Ann. Phys. 5, 596-640 (1950).
  31. J. Lafait, T. Yamaguchi, J. M. Frigerio, A. Bichri, and K. Driss-Khodja, "Effective medium equivalent to a symmetric multilayer at oblique incidence," Appl. Opt. 29, 2460-2465 (1990). [CrossRef] [PubMed]
  32. S. Visnovský, "Magneto-optical permittivity tensor in crystals," Czech. J. Phys., Sect. B 36, 1424-1433 (1986). [CrossRef]
  33. J. Pistora, K. Postava, and R. Sebesta, "Optical guided modes in sandwiches with ultrathin metallic films," J. Magn. Magn. Mater. 198-199, 683-685 (1999). [CrossRef]
  34. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes inC++:The Art of Scientifique Computing , 2nd ed. (Cambridge U. Press, Cambridge, 2002).
  35. T. D. Visser, H. Blok, B. Demeulenaere, and D. Lenstra, "Confinement factors and gain in optical amplifiers," IEEE J. Quantum Electron. 33, 1763-1766 (1997). [CrossRef]
  36. A. F. Popkov, M. Fehndrich, M. Lohmeyer, and H. Dötsch, "Nonreciprocal TE-mode phase shift by domain walls in magnetooptic rib waveguides," Appl. Phys. Lett. 72, 2508-2510 (1998). [CrossRef]
  37. C. Vassallo, Optical Waveguide Concepts (Elsevier, Amsterdam, 1991).
  38. F. Olyslager, Electromagnetic Waveguides and Transmission Lines (Clarendon, Oxford, 1999).
  39. O. J. Glembocki and H. Piller, "Indium phospide (InP)," in Handbook of Optical Constants of Solids , E. D. Palik, ed. (Academic, San Diego, Calif., 1985), pp. 503-516.
  40. B. Jensen, in Handbook of Optical Constants of Solids II , E. D. Palik, ed. (Academic, San Diego, Calif., 1991), Chap. 6. Calculation of the refractive index of compound semiconductors below the band gap, pp. 125-149.
  41. M. Muñoz, T. M. Holden, F. H. Pollak, M. Kahn, D. Ritter, L. Kronik, and G. M. Cohen, "Optical constants of In0.53Ga0.47As/InP: experiment and modeling," J. Appl. Phys. 92, 5878-5885 (2002). [CrossRef]
  42. M. Compin, B. Bartenlian, P. Beauvillain, P. Gogol, J. Hamrle, L. Lagae, J. Pistora, K. Postava, S. Visnovsky, and R. Wirix-Speetjens, "Détermination des indices optiques et magnéto-optiques de films minces de CoFe constituant un isolateur intégré à 1.3 µm," presented at the Colloque Louis Neél CMNM 2004, Autrans, France, March 17-19, 2004.
  43. K. Postava, J. Pistora, and T. Yamaguchi, "Magneto-optic vector magnetometry for sensor applications," Sens. Actuators, A 110, 242-246 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited