OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 22, Iss. 1 — Jan. 1, 2005
  • pp: 286–292

Magneto-optical properties of photonic crystals

V. I. Belotelov and A. K. Zvezdin  »View Author Affiliations

JOSA B, Vol. 22, Issue 1, pp. 286-292 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (225 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Magneto-optical properties of photonic crystals (or bandgap materials) have been examined with respect to their possible applications for the control of electromagnetic radiation in integrated-optics devices. Theoretical studies of one-dimensional photonic crystals were conducted on the basis of the transfer-matrix method. For investigation of two- and three-dimensional photonic crystals we propose the original theoretical approach based on perturbation theory. Magneto-optical Faraday and Voigt effects have been studied near extremum points of photonic bands where their significant enhancement takes place. On the basis of the theory elaborated some experimental results are discussed. Experimentally obtained Faraday-rotation-angle-frequency dependence shows good agreement with our theoretical analysis.

© 2005 Optical Society of America

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(210.3810) Optical data storage : Magneto-optic systems
(260.3160) Physical optics : Interference

V. I. Belotelov and A. K. Zvezdin, "Magneto-optical properties of photonic crystals," J. Opt. Soc. Am. B 22, 286-292 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2063 (1987). [CrossRef] [PubMed]
  2. E. Yablonovitch, "Inhibited and enhanced spontaneous emission from optically thin AlGaAs/GaAs double heterostructures," Phys. Rev. Lett. 61, 2546-2549 (1988). [CrossRef] [PubMed]
  3. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  4. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
  5. C. Monat, C. Seassal, and X. Letartre, "InP-based photonic crystal microlasers on silicon wafer," Physica E (Amsterdam) 17, 475-476 (2003). [CrossRef]
  6. M. D. B. Charlton, M. E. Zoorob, and G. J. Parker, "Polarisation-dependent mixing in photonic crystal filled optical resonators," Mater. Sci. Eng., B 74, 17-27 (2000). [CrossRef]
  7. T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, "Dispersion compensation using single material fibers," IEEE Photonics Technol. Lett. 11, 674-680 (1999). [CrossRef]
  8. V. Berger, "Nonlinear photonic crystals," Phys. Rev. Lett. 81, 4136-4139 (1998). [CrossRef]
  9. T. Baba and M. Nakamura, "Spacing-tunable multiwavelength fiber laser," IEEE J. Quantum Electron. 38, 909-914 (2002). [CrossRef]
  10. A. de Lustrac, F. Gadot, S. Cabaret, J. M. Lourtioz, T. Brillat, A. Priou, and E. Akmansoy, "High-transmission defect modes in two-dimensional metallic photonic crystals," Appl. Phys. Lett. 75, 1625 (1999). [CrossRef]
  11. S. Kim and V. Gopalan, "Strain-tunable photonic band gap crystals," Appl. Phys. Lett. 78, 3015-3021 (2001). [CrossRef]
  12. C. S. Kee, H. Lim, Y. K. Ha, J. E. Kim, and H. Y. Park, "Two-dimensional tunable metallic photonic crystals infiltrated with liquid crystals," Phys. Rev. B 64, 085114 (2001). [CrossRef]
  13. D. Lacoste, F. Donatini, and S. Neveu, "Photonic Hall effect in ferrofluids: theory and experiments," Phys. Rev. E 62, 3934-3943 (2000). [CrossRef]
  14. L. B. Gates and Y. N. Xia, "Mesoporous silica films with highly ordered large pore structures," Adv. Mater. (Weinheim, Ger.) 13, 1605-1613 (2001). [CrossRef]
  15. E. L. Bizdoaca, M. Spasova, and M. Farle, "Magnetically directed self-assembly of submicron spheres with a Fe3O4 nanoparticle shell," J. Magn. Magn. Mater. 240, 44-46 (2002). [CrossRef]
  16. A. Figotin and I. Vitebsky, "Nonreciprocal magnetic photonic crystals," Phys. Rev. E 63, 066609 (2001). [CrossRef]
  17. T. V. Dolgova, A. A. Fedyanin, T. Yoshida, K. Nishimura, G. Marowsky, M. Inoue, and O. A. Aksipetrov, "Magnetization-induced second-harmonic generation in magnetophotonic microcavities based on ferrite garnets," JETP Lett. 76, 527-531 (2002). [CrossRef]
  18. M. Inoue and T. Fujii, "Magnetooptical properties of one-dimensional photonic crystals composed of random magnetic and dielectric layers," J. Appl. Phys. 81, 5659-5665 (1997). [CrossRef]
  19. M. Inoue, K. Arai, T. Fujii, and M. Abe, "Magnetooptical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers," J. Appl. Phys. 85, 5768-5777 (1999). [CrossRef]
  20. M. J. Steel, M. Levy, and R. M. Osgood, "High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects," IEEE Photonics Technol. Lett. 12, 1171-1173 (2000). [CrossRef]
  21. H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, "Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals," J. Appl. Phys. 93, 3906-3911 (2003). [CrossRef]
  22. H. Kato, T. Matsushita, and A. Takayama, "Effect of optical losses on optical and magneto-optical properties of one-dimensional magnetophotonic crystals for use in optical isolator devices," J. Appl. Phys. 93, 3906-3911 (2003). [CrossRef]
  23. Y. Saado, M. Golosovsky, D. Davidov, and A. Frenkel, "Tunable photonic bandgap in self-assembled clusters of floating magnetic particles," Phys. Rev. B 66, 195108 (2002). [CrossRef]
  24. M. Levy, H. C. Yang, and M. J. Steel, "Flat top response in one-dimensional magnetic photonic band gap structures with Faraday rotation enhancement," J. Lightwave Technol. 19, 1964-1969 (2001). [CrossRef]
  25. T. V. Dolgova, A. A. Fedyanin, O. A. Aksipetrov, K. Nishimura, H. Uchida, and M. Inoue, "Nonlinear magneto-optical Kerr effect in garnet magnetophotonic crystals," J. Appl. Phys. 95, 7330-7332 (2004). [CrossRef]
  26. S. N. Kurilkina and M. V. Shuba, "Propagation and transformation of the light waves in magnetoactive periodic structures," Opt. Spectrosc. 93, 918-923 (2002). [CrossRef]
  27. A. K. Zvezdin and V. I. Belotelov, "Magnetooptical properties of photonic crystals," Eur. Phys. J. B 37, 479-487 (2004). [CrossRef]
  28. I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, E. A. Shapovalov, and Th. Rasing, "Magnetic photonic crystals," J. Phys. D 36, R277-287 (2003). [CrossRef]
  29. A. Zvezdin and V. Kotov, Modern Magneto-optics and Magneto-optical materials (Institute of Physics, London, 1997).
  30. M. Shubert, "Explicit solutions for the optical properties of arbitrary magneto-optic materials in generalized ellipsometry," Appl. Opt. 38, 177-184 (1999). [CrossRef]
  31. I. Abdulhalim, "Analytic propagation matrix method for anisotropic magneto-optic layered media," J. Opt. A, Pure Appl. Opt. 2, 557-561 (2000). [CrossRef]
  32. J. Metzdorf and F. R. Kessler, "Magneto-optical properties of Si-based substances in the external magnetic field," Phys. Status Solidi B 71, 237-247 (1975). [CrossRef]
  33. I. S. Grigoriev, Handbook of Physical Values (Nauka, Moscow, 1991).
  34. K. Sakoda, Optical Properties of Photonic Crystals , 2nd ed. (Springer-Verlag, New York, 2004).
  35. M. Plihal, A. Shambrook, and A. A. Maradudin, "Two-dimensional photonic crystals," Opt. Commun. 80, 199-211 (1991). [CrossRef]
  36. C. Koerdt, G. L. J. A. Rikken, and E. P. Petrov, "Faraday effect of photonic crystals," Appl. Phys. Lett. 82, 1538-1540 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited